Functional Data Structures

Exercise Sheet 12

Exercise 12.1 Balanced Queues

Consider locale Queue in file Thys/Amortized_Examples. A call of deq (xs,[]) requires the reversal of xs, which may be very long. We can reduce that impact by shifting xs over to ys whenever length xs > length ys. This does not improve the amortized complexity (in fact it increases it by 1) but reduces the worst case complexity of individual calls of deq. Modify locale Queue as follows:

locale Queue begin

type_synonym 'a queue = "'a list * 'a list"

definition "init = ([],[])" fun balance :: "'a queue \Rightarrow 'a queue" where "balance(xs,ys) = (if size $xs \leq size$ ys then (xs,ys) else ([], ys @ rev xs))" fun enq :: "'a \Rightarrow 'a queue \Rightarrow 'a queue" where "enq a (xs,ys) = balance (a#xs, ys)" fun deq :: "'a queue \Rightarrow 'a queue" where "deq (xs,ys) = balance (xs, tl ys)"

Again, we count only the newly allocated list cells.

fun t_balance :: "'a queue \Rightarrow nat" where "t_balance (xs,ys) = (if size $xs \leq$ size ys then 0 else size xs + size ys)" fun t_enq :: "'a \Rightarrow 'a queue \Rightarrow nat" where "t_enq a (xs,ys) = 1 + t_balance (a#xs, ys)" fun t_deq :: "'a queue \Rightarrow nat" where "t_deq (xs,ys) = t_balance (xs, tl ys)"

• Start over with showing functional correctness. Hint: You will require an invariant.

fun invar :: "'a queue \Rightarrow bool" fun abs :: "'a queue \Rightarrow 'a list" lemma [simp]: "invar init" lemma [simp]: "invar $q \Longrightarrow$ invar (enq x q)" lemma [simp]: "invar $q \Longrightarrow$ invar (deq q)" lemma [simp]: "abs init = []" lemma [simp]: "invar $q \Longrightarrow$ abs (enq x q) = x#abs q" lemma [simp]: "invar $q \Longrightarrow$ abs (deq q) = butlast (abs q)" • Next, define a suitable potential function Φ , and prove that the amortized complexity of enq is ≤ 3 and of deq is ≤ 0 .

fun Φ :: "'a queue \Rightarrow int" lemma Φ_{-non_neg} : " Φ $t \ge 0$ " lemma Φ_{-init} : " Φ init = 0" lemma a_{-enq} : " $t_{-enq} a q + \Phi(enq a q) - \Phi q \le 3$ " lemma $a_{-}deq$: " $t_{-}deq q + \Phi(deq q) - \Phi q \le 0$ "

Finally, show that a sequence of enqueue and dequeue operations requires linear cost in its length:

```
datatype 'a opr = ENQ 'a | DEQ
```

 $\begin{array}{l} \textbf{fun execute :: "'a queue \Rightarrow 'a opr list \Rightarrow 'a queue"} \\ \textbf{where} \\ "execute q [] = q" \\ | "execute q (ENQ x \# ops) = execute (enq x q) ops" \\ | "execute q (DEQ \# ops) = execute (deq q) ops" \end{array}$

Count only list cell allocations!

fun *t_execute* :: "'a queue \Rightarrow 'a opr list \Rightarrow nat"

lemma *t_execute*: "*t_execute init ops* $\leq 3*$ *length ops*"

Homework 12 Dynamic Tables with real-valued Potential

Submission until Friday, 21. 7. 2017, 11:59am.

In file $Thys/Amortized_Examples$ in the repository there is a formalization of dynamic tables in locale Dyn_Tab with the potential function $\Phi(n,l) = 2*n - l$ and a discussion of why this is tricky. The standard definition you find in textbooks does not rely on cut-off subtraction on *nat* but uses standard real numbers:

 $type_synonym tab = "nat \times nat"$

fun Φ :: "tab \Rightarrow real" where " Φ (n,l) = 2*(real n) - real l"

Start with the locale Dyn_Tab in file $Thys/Amortized_Examples$ but use the above definition of $\Phi :: tab \Rightarrow real$. A number of proofs will now fail because the invariant is now too weak. Find a stronger invariant such that all the proofs work again.