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Exercise 12.1 Balanced Queues

Consider locale Queue in file Thys/Amortized Examples. A call of deq (xs,[]) requires
the reversal of xs, which may be very long. We can reduce that impact by shifting xs over
to ys whenever length xs > length ys. This does not improve the amortized complexity
(in fact it increases it by 1) but reduces the worst case complexity of individual calls of
deq. Modify locale Queue as follows:

locale Queue begin

type synonym ′a queue = “ ′a list ∗ ′a list”

definition “init = ([],[])”
fun balance :: “ ′a queue ⇒ ′a queue” where
“balance(xs,ys) = (if size xs ≤ size ys then (xs,ys) else ([], ys @ rev xs))”
fun enq :: “ ′a ⇒ ′a queue ⇒ ′a queue” where
“enq a (xs,ys) = balance (a#xs, ys)”
fun deq :: “ ′a queue ⇒ ′a queue” where
“deq (xs,ys) = balance (xs, tl ys)”

Again, we count only the newly allocated list cells.

fun t balance :: “ ′a queue ⇒ nat” where
“t balance (xs,ys) = (if size xs ≤ size ys then 0 else size xs + size ys)”

fun t enq :: “ ′a ⇒ ′a queue ⇒ nat” where
“t enq a (xs,ys) = 1 + t balance (a#xs, ys)”
fun t deq :: “ ′a queue ⇒ nat” where
“t deq (xs,ys) = t balance (xs, tl ys)”

• Start over with showing functional correctness. Hint: You will require an invariant.

fun invar :: “ ′a queue ⇒ bool”
fun abs :: “ ′a queue ⇒ ′a list”
lemma [simp]: “invar init”
lemma [simp]: “invar q =⇒ invar (enq x q)”
lemma [simp]: “invar q =⇒ invar (deq q)”
lemma [simp]: “abs init = []”
lemma [simp]: “invar q =⇒ abs (enq x q) = x#abs q”
lemma [simp]: “invar q =⇒ abs (deq q) = butlast (abs q)”
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• Next, define a suitable potential function Φ, and prove that the amortized com-
plexity of enq is ≤ 3 and of deq is ≤ 0.

fun Φ :: “ ′a queue ⇒ int”
lemma Φ non neg : “Φ t ≥ 0”
lemma Φ init : “Φ init = 0”
lemma a enq : “ t enq a q + Φ(enq a q) − Φ q ≤ 3”
lemma a deq : “ t deq q + Φ(deq q) − Φ q ≤ 0”

Finally, show that a sequence of enqueue and dequeue operations requires linear cost in
its length:

datatype ′a opr = ENQ ′a | DEQ

fun execute :: “ ′a queue ⇒ ′a opr list ⇒ ′a queue”
where
“execute q [] = q”
| “execute q (ENQ x#ops) = execute (enq x q) ops”
| “execute q (DEQ#ops) = execute (deq q) ops”

Count only list cell allocations!

fun t execute :: “ ′a queue ⇒ ′a opr list ⇒ nat”

lemma t execute: “t execute init ops ≤ 3∗length ops”

Homework 12 Dynamic Tables with real-valued Potential

Submission until Friday, 21. 7. 2017, 11:59am.

In file Thys/Amortized Examples in the repository there is a formalization of dynamic
tables in locale Dyn Tab with the potential function Φ (n,l) = 2∗n − l and a discussion
of why this is tricky. The standard definition you find in textbooks does not rely on
cut-off subtraction on nat but uses standard real numbers:

type synonym tab = “nat × nat”

fun Φ :: “tab ⇒ real” where
“Φ (n,l) = 2∗(real n) − real l”

Start with the locale Dyn Tab in file Thys/Amortized Examples but use the above defi-
nition of Φ :: tab ⇒ real. A number of proofs will now fail because the invariant is now
too weak. Find a stronger invariant such that all the proofs work again.
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