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Exercise 3.1 Membership Test with Less Comparisons

In the worst case, the isin function performs two comparisons per node. In this exercise,
we want to reduce this to one comparison per node. The idea is that we never test for
>, but always goes right if not <. However, one remembers the value where one should
have tested for =, and performs the comparison when a leaf is reached.
fun isin2 :: “( ′a::linorder) tree ⇒ ′a option ⇒ ′a ⇒ bool”

— The second parameter stores the value for the deferred comparison

Show that your function is correct.
Hint: Auxiliary lemma for isin2 t (Some y) x !
lemma isin2_None:

“bst t =⇒ isin2 t None x = isin t x”

Exercise 3.2 Height-Preserving In-Order Join

Write a function that joins two binary trees such that

• The in-order traversal of the new tree is the concatenation of the in-order traversals
of the original trees

• The new tree is at most one higher than the highest original tree
Hint: Once you got the function right, proofs are easy!

fun join :: “ ′a tree ⇒ ′a tree ⇒ ′a tree”

lemma join_inorder [simp]: “inorder(join t1 t2) = inorder t1 @ inorder t2”

lemma “height(join t1 t2) ≤ max (height t1) (height t2) + 1”
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Exercise 3.3 Implement Delete

Implement delete using the join function from last exercise.

Note: At this point, we are not interested in the implementation details of join any more,
but just in its properties, i.e. what it does to trees. Thus, as first step, we declare its
equations to not being automatically unfolded.
declare join.simps[simp del]

Both set_tree and bst can be expressed by the inorder traversal over trees:
thm set_inorder [symmetric] bst_iff_sorted_wrt_less

Note that set_inorder is declared as simp. Be careful not to have both directions of the
lemma in the simpset at the same time, otherwise the simplifier is likely to loop.
You can use simp del: set_inorder add: set_inorder [symmetric] to temporarily remove
the first direction of the lemma from the simpset.
Alternatively, you can write declare set_inorder [simp del] to remove it once and forall.

For bst, you might want to delete the bst_wrt simps, and use the append lemma:
thm bst_wrt.simps
thm sorted_wrt_append

Show that join preserves the set of entries
lemma [simp]: “set_tree (join t1 t2) = set_tree t1 ∪ set_tree t2”

Show that joining the left and right child of a BST is again a BST:
lemma [simp]: “bst (Node l (x::_::linorder) r) =⇒ bst (join l r)”

Implement a delete function using the idea contained in the lemmas above.
fun delete :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree”

Prove it correct! Note: You’ll need the first lemma to prove the second one!
lemma [simp]: “bst t =⇒ set_tree (delete x t) = (set_tree t) − {x}”

lemma “bst t =⇒ bst (delete x t)”
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Homework 3.1 Remdups

Submission until Thursday, May 6, 23:59pm.

Your task is to write a function that removes duplicates from a list, using a BST to
efficiently store the set of already encountered elements.
You may want to start with an auxiliary function, that takes the BST with the elements
seen so far as additional argument, and then define the actual function.
fun bst_remdups_aux :: “ ′a::linorder tree ⇒ ′a list ⇒ ′a list”
definition “bst_remdups xs ≡ bst_remdups_aux Leaf xs”

Show that your function preserves the set of elements, and returns a list with no dupli-
cates (predicate distinct in Isabelle). Hint: Generalization!

theorem remdups_set: “set (bst_remdups xs) = set xs”

theorem remdups_distinct: “distinct (bst_remdups xs)”

A list xs is a sublist of ys, if xs can be produced from ys by deleting an arbitrary number
of elements.
Define a function sublist xs ys to check whether xs is a sublist of ys.
fun sublist :: “ ′a list ⇒ ′a list ⇒ bool”

Show that your remdups function produces a sublist of the original list!
Hint: Generalization. Auxiliary lemma required.

theorem remdups_sub: “sublist (bst_remdups xs) xs”

Homework 3.2 Tree Addressing

Submission until Thursday, May 6, 23:59pm.

A position in a tree can be given as a list of navigation instructions from the root, i.e.,
whether to go to the left or right subtree. We call such a list a path.
datatype direction = L | R
type_synonym path = “direction list”

Specify a function to return the subtree addressed by a given path:
fun get :: “ ′a tree ⇒ path ⇒ ′a tree”

Specify a function put t p s, that returns t, with the subtree at p replaced by s.
fun put :: “ ′a tree ⇒ path ⇒ ′a tree ⇒ ′a tree”
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How you define those functions for invalid paths is up to you.
Next, specify when a path is valid:
fun valid :: “ ′a tree ⇒ path ⇒ bool”

Write a function find t s, that returns the set of all paths which address the subtree s in
t.
fun find :: “ ′a tree ⇒ ′a tree ⇒ path set”

Prove the following algebraic laws on put and get.
lemma get_put: “valid t p =⇒ put t p (get t p) = t”

lemma put_get: “valid t p =⇒ get (put t p s) p = s”

Prove the the correctness of find with respect to put and get:
lemma find_get: “p ∈ find t s =⇒ get t p = s”

lemma put_find: “valid t p =⇒ p ∈ find (put t p s) s”
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