
Technische Universität München SS 2021
Institut für Informatik 7. 5. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 4

Exercise 4.1 List Elements in Interval

Write a function to in-order list all elements of a BST in a given interval. I.e. in_range
t u v shall list all elements x with u≤x≤v. Write a recursive function that does not
descend into subtrees that definitely contain no elements in the given range.
fun in_range :: “ ′a::linorder tree ⇒ ′a ⇒ ′a ⇒ ′a list”

Show that you list the right set of elements
lemma “bst t =⇒ set (in_range t u v) = {x∈set_tree t. u≤x ∧ x≤v}”

Show that your list is actually in-order
lemma “bst t =⇒ in_range t u v = filter (λx. u≤x ∧ x≤v) (inorder t)”

Exercise 4.2 Enumeration of Trees

Write a function that generates the set of all trees up to a given height. Show that only
trees up to the specified height are contained.
fun enum :: “nat ⇒ unit tree set”
lemma enum_sound: “t ∈ enum n =⇒ height t ≤ n”

(Time permitting) Show the other direction, i.e. that all trees of the specified height are
contained.
lemma enum_complete: “height t ≤ n =⇒ t ∈ enum n”

lemma enum_correct: “enum h = {t. height t ≤ h}”
by (auto simp: enum_complete enum_sound)

1



Homework 4 Rank Annotated Trees

Submission until Thursday, May 13, 23:59pm.

In this homework, we will develop a binary search tree that additionally stores the rank
(= number of nodes) of the left subtree in each node.
With this auxiliary information, it is easy to implement a rank query, i.e., to return the
position of a given element in the inorder traversal.
Note that trees with annotations could also be implemented as standard trees with
their annotation contained in the node data. That way, some functions such as the
inorder traversal don’t need to be re-defined – however, it makes proving slightly more
complicated.
datatype ′a rtree = Leaf | Node “ ′a rtree” nat ′a “ ′a rtree”

Define a function to count the number of actual nodes in a tree.
fun num_nodes :: “ ′a rtree ⇒ nat”

Define a function to check for the invariant: search tree property and the correct rank
annotation (number of nodes in left subtree)
fun rbst :: “ ′a::linorder rtree ⇒ bool”

Define the insert function. You may assume that the value to be inserted is not contained
in the tree. Note: Double-check to correctly update the rank annotation.
fun rins :: “ ′a::linorder ⇒ ′a rtree ⇒ ′a rtree”

Show that rins actually inserts, and preserves the invariant. Hint: Auxiliary lemma on
number of nodes.
lemma rins_set: “set_rtree (rins x t) = insert x (set_rtree t)”
lemma rins_invar : “x /∈set_rtree t =⇒ rbst t =⇒ rbst (rins x t)”

Define the membership query function and show it correct.
fun risin :: “ ′a::linorder ⇒ ′a rtree ⇒ bool”
lemma risin_set: “rbst t =⇒ risin x t ←→ x∈set_rtree t”

Define the inorder traversal
fun inorder :: “ ′a rtree ⇒ ′a list”

Define a function that returns the rank of an element. Use the rank annotation to avoid
unnecessary descents into the tree.
Note: You may assume that the element is contained in the tree.
fun rank :: “ ′a::linorder ⇒ ′a rtree ⇒ nat”

The operator (!):: ′a list ⇒ nat ⇒ ′a indexes a list, i.e., l!n is the nth element of list l,
or undefined, if the index is out of bounds. The following predicate states that index i
into list l contains element x

2



definition “at_index i l x ≡ i<length l ∧ l!i=x”

Show your rank function correct. Hint: Auxiliary lemma relating num_nodes and in-
order.
lemma inorder_index: “rbst t =⇒ x∈set_rtree t =⇒ at_index (rank x t) (inorder t) x”

Define a select function, that returns the ith element of the inorder traversal, and prove
it correct.
Only recurse over the tree once, following a single path. In particular, inorder t ! i is
not the desired solution, as it would enumerate all nodes of the tree in a list first, and
not exploit the rank annotations at all.
fun select :: “nat ⇒ ′a::linorder rtree ⇒ ′a”
lemma select_correct: “rbst t =⇒ i<length (inorder t) =⇒ select i t = inorder t ! i”

3


