
Technische Universität München SS 2021
Institut für Informatik 14. 5. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 5

Solve this exercise sheet without using sledgehammer ! Proofs using smt, metis, meson,
or moura are forbidden!

Exercise 5.1 Bounding power-of-two by factorial

Prove that, for all natural numbers n > 3, we have 2n < n!. We have already prepared
the proof skeleton for you.
lemma exp_fact_estimate: “n>3 =⇒ (2::nat)^n < fact n”
proof (induction n)

case 0 then show ?case by auto
next

case (Suc n)
show ?case

Fill in a proof here. Hint: Start with a case distinction whether n>3 or n=3.

Warning! Make sure that your numerals have the right type, otherwise proofs will not
work! To check the type of a numeral, hover the mouse over it with pressed CTRL (Mac:
CMD) key. Example:
lemma “2^n ≤ 2^Suc n”

apply auto oops

Leaves the subgoal 2 ^ n ≤ 2 ∗ 2 ^ n

You will find out that the numeral 2 has type ′a, for which you do not have any ordering
laws. So you have to manually restrict the numeral’s type to, e.g., nat.
lemma “(2::nat)^n ≤ 2^Suc n” by simp

Exercise 5.2 Sum Squared is Sum of Cubes

• Define a recursive function sumto f n =
∑

i=0...n f(i).
• Show that (

∑
i=0...n i)

2 =
∑

i=0...n i
3.

1



fun sumto :: “(nat ⇒ nat) ⇒ nat ⇒ nat”

You may need the following lemma:
lemma sum_of_naturals: “2 ∗ sumto (λx. x) n = n ∗ (n + 1)”

lemma “sumto (λx. x) n ^ 2 = sumto (λx. x^3) n”
proof (induct n)

case 0 show ?case by simp
next

case (Suc n)
assume IH : “(sumto (λx. x) n)2 = sumto (λx. x ^ 3) n”
note [simp] = algebra_simps — Extend the simpset only in this block
show “(sumto (λx. x) (Suc n))2 = sumto (λx. x ^ 3) (Suc n)”

Exercise 5.3 Pretty Printing of Binary Trees

Binary trees can be uniquely pretty-printed by emitting a symbol L for a leaf, and a
symbol N for a node. Each N is followed by the pretty-prints of the left and right tree.
No additional brackets are required!
datatype ′a tchar = L | N ′a

fun pretty :: “ ′a tree ⇒ ′a tchar list”
value “pretty (Node (Node Leaf 0 Leaf ) (1::nat) (Node Leaf 2 Leaf )) = [N 1, N 0, L, L, N 2, L,
L]”

Show that pretty-printing is actually unique, i.e. no two different trees are pretty-printed
the same way. Hint: Auxiliary lemma.

lemma pretty_unique: “pretty t = pretty t ′ =⇒ t=t ′”

Define a function that checks whether two binary trees have the same structure. The
values at the nodes may differ.
fun bin_tree2 :: “ ′a tree ⇒ ′b tree ⇒ bool”

While this function itself is not very useful, the induction principle generated by the
function package is! It allows simultaneous induction over two trees:
print_statement bin_tree2.induct

Try to prove the above lemma with that new induction principle.

2



Homework 5.1 Split Lists

Submission until Thursday, May 20, 23:59pm. Recall: Proofs using metis, smt, me-
son, or moura (as generated by sledgehammer) are forbidden! Write your proofs down
structured. You should not use apply.
Show that every list can be split into a prefix and a suffix, such that the length of the
prefix is 1/n of the original lists’s length. (This works without the assumption that 0 <
n, since division by zero is defined as zero.)

theorem split_list: “∃ ys zs. length ys = length xs div n ∧ xs=ys@zs”

Homework 5.2 Estimate Recursion Equation

Submission until Thursday, May 20, 23:59pm.
Recall: Proofs using metis, smt, meson, or moura (as generated by sledgehammer) are
forbidden! Write your proofs down structured. You should not use apply.
Show that the function defined by a 0 = 0 and a (n+1) = (a n)2 + 1 is bounded by
the double-exponential function 2^(2^n)

We have given you a proof skeleton, setting up the induction. To complete your proof,
you should come up with a chain of inequations.
Hint: It is a bit tricky to get the approximation right. We strongly recommend to sketch
the inequations on paper first.
Hint: Have a look at the lemma power_mono, in particular its instance for squares:
thm power_mono[where n=2]

theorem a_bound: “a n ≤ 2 ^ (2 ^ n) − 1”
proof(induction n)

case 0 thus ?case by simp
next

case (Suc n)
assume IH : “a n ≤ 2 ^ 2 ^ n − 1”
show “a (Suc n) ≤ 2 ^ 2 ^ Suc n − 1”

3


