Functional Data Structures

Exercise Sheet 6

Exercise 6.1 Complexity of Naive Reverse

Show that the naive reverse function needs quadratically many *Cons* operations in the length of the input list. (Note that [x] is syntax sugar for *Cons* x []!)

thm append.simps

fun reverse where
 "reverse [] = [] "
| "reverse (x#xs) = reverse xs @ [x] "

Exercise 6.2 Selection Sort

Selection sort (also known as MinSort) sorts a list by repeatedly moving the smallest element of the remaining list to the front.

Define a function that takes a non-empty list, and returns the minimum element and the list with the minimum element removed

fun find_min :: "'a::linorder list \Rightarrow 'a \times 'a list"

Show that *find_min* returns the minimum element

lemma find_min_min: assumes "find_min xs = (y,ys)" and " $xs \neq []$ " shows " $a \in set \ xs \implies y \leq a$ "

Show that *find_min* returns exactly the elements from the list

lemma find_min_mset: assumes "find_min (x#xs) = (y,ys)" shows "mset (x#xs) = (mset (y#ys))"

Show the following lemma on the length of the returned list, and register it as [termination_simp]. The function package will require this to show termination of the selection sort function.

lemma find_min_snd_len_decr[termination_simp]: **assumes** " $(y,ys) = find_min (x\#xs)$ " **shows** "length ys < Suc (length xs)"

Selection sort can now be written as follows:

fun sel_sort where
 "sel_sort [] = []"
 "sel_sort xs = (let (y,ys) = find_min xs in y#sel_sort ys)"

Show that selection sort is a sorting algorithm:

lemma $sel_sort_mset[simp]$: "mset ($sel_sort xs$) = mset xs"

lemma "sorted (sel_sort xs)"

Homework 6.1 Cost of Selection Sort

Submission until Thursday, May 27, 23:59pm. Recall the selection sort from the tutorial (which can be found in the *Defs*).

Define cost functions for the number of comparisons of *sel_sort*. For if/else, over-estimate the cost by always choosing the more expensive branch.

fun $T_find_min :: "'a::linorder list <math>\Rightarrow$ nat" **fun** $T_sel_sort :: "'a::linorder list <math>\Rightarrow$ nat" **lemma** $T_find_min_cmpx: "xs \neq [] \implies T_find_min xs = length xs - 1"$

Try to find a closed formula for T_sel_sort yourself! (Hint: Should be $O(n^2)$) If you struggle with finding a closed formula, on paper:

- Put up a recurrence equation (depending only on the length of the list)
- Solve the equation (Assume that the solution is an order-2 polynomial)

theorem $T_sel_sort_cmpx$: " $T_sel_sort xs = undefined$ "

Homework 6.2 Sorting Networks

Submission until Thursday, May 27, 23:59pm.

Comparison networks are a model of parallel algorithms on fixed-size lists. A sorting network is a specific comparison network that sorts its input lists.

A comparison network can be viewed as set of wires x_i , one for each list element. Between those wires are a number of *comparators* c_i ; each comparator is connected to two wires. For Example (lists of size three): x0---[]-----[]----| c0 | c2 x1---[]---[]----| c1 x2------[]-----

Each comparator will shift the greater element of its inputs up, and the smaller element down.

We represent a network by a list of comparators, where each comparator is characterized by the index of its wires – i.e., $c_0 = (0, 1)$, and after the applying c_0 , the greater element will be at position of x_1 .

type_synonym comparator = "(nat × nat)" type_synonym compnet = "comparator list"

Write a function to perform the computation of a single comparator on a 'a list. If the comparator would compare elements out of the range of the input list, return the input unchanged.

Hint: Use the existing *list_update* and *nth* functions. *list_update* also has nice snytax: xs[0 := 1, 1 := 2]

definition compnet_step :: "comparator \Rightarrow 'a :: linorder list \Rightarrow 'a list"

Some test cases:

value "compnet_step (1,100) [1,2::nat] = [1,2]" value "compnet_step (1,2) [1,3,2::nat] = [1,2,3]"

The whole network operation is now a step-wise fold over the comparators:

definition $run_compnet ::$ "compnet \Rightarrow 'a :: linorder list \Rightarrow 'a list" where "run_compnet = fold compnet_step"

Start by proving that compnets keep the *mset* unchanged.

theorem compnet_mset[simp]: "mset (run_compnet comps xs) = mset xs"

Sortedness is a bit more difficult. Define a sorting net for lists of length 4 first. Use at most five comparators!

definition sort4 :: compared value "length sort4 ≤ 5 " value "run_compared sort4 [4,2,1,3::nat] = [1,2,3,4]"

We want to prove that this definition is correct:

lemma "length $ls = 4 \implies sorted (run_compnet sort4 ls)$ " oops

However, doing that directly is not easily possible. But we can easily prove that it sorts boolean lists, since there is only a finite number of those.

We use the *all_n_lists* to obtain a version of the lemma that doesn't contain any free variables, so that *eval* can prove it exhaustively. Then we show that this holds when stated in the more obvious way.

lemma sort4_bool_exhaust: "all_n_lists (λ bs::bool list. sorted (run_compnet sort4 bs)) 4" — Should be provable by eval if your definition is correct!

lemma sort4_bool: "length (bs::bool list) = $4 \implies$ sorted (run_compact sort4 bs)" using sort4_bool_exhaust[unfolded all_n_lists_def] set_n_lists by fastforce

From that, we can show that our networks sorts any list – this is known as the *zero-one principle*. First prove that the sorting does not change when mapped with a monotone function (ctrl+click to see the definition of *mono*).

3 bonus points if you don't use *sledgehammered* proof steps (i.e., using *metis*, *smt*, *meson*, or *moura*) in the lemma or any required auxiliary theorem! To claim those points, mark the lemma with (* *clean* *).

lemma compnet_map_mono:
 assumes "mono f"
 shows "run_compnet cs (map f xs) = map f (run_compnet cs xs)"

Now prove the zero-one principle.

Hint: Proof by contradiction. If you are stuck, look for a proof on paper in existing literature!

theorem zero_one_principle: **assumes** " \land bs:: bool list. length bs = length xs \implies sorted (run_compnet cs bs)" **shows** "sorted (run_compnet cs xs)" (**is** "sorted ?rs")

Finally, sortedness of the *sort4* net follows (for any type).

corollary "length $xs = 4 \implies$ sorted (run_comparet sort4 xs)" by (simp add: sort4_bool zero_one_principle)