
Technische Universität München SS 2021
Institut für Informatik 21. 5. 2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 6

Exercise 6.1 Complexity of Naive Reverse

Show that the naive reverse function needs quadratically many Cons operations in the
length of the input list. (Note that [x] is syntax sugar for Cons x []!)
thm append.simps

fun reverse where
“reverse [] = []”

| “reverse (x#xs) = reverse xs @ [x]”

Exercise 6.2 Selection Sort

Selection sort (also known as MinSort) sorts a list by repeatedly moving the smallest
element of the remaining list to the front.

Define a function that takes a non-empty list, and returns the minimum element and
the list with the minimum element removed
fun find_min :: “ ′a::linorder list ⇒ ′a × ′a list”

Show that find_min returns the minimum element
lemma find_min_min:

assumes “find_min xs = (y,ys)”
and “xs 6=[]”

shows “a∈set xs =⇒ y ≤ a”

Show that find_min returns exactly the elements from the list
lemma find_min_mset:

assumes “find_min (x#xs) = (y,ys)”
shows “mset (x#xs) = (mset (y#ys))”

Show the following lemma on the length of the returned list, and register it as [termination_simp].
The function package will require this to show termination of the selection sort function.

1

lemma find_min_snd_len_decr [termination_simp]:
assumes “(y,ys) = find_min (x#xs)”
shows “length ys < Suc (length xs)”

Selection sort can now be written as follows:
fun sel_sort where

“sel_sort [] = []”
| “sel_sort xs = (let (y,ys) = find_min xs in y#sel_sort ys)”

Show that selection sort is a sorting algorithm:
lemma sel_sort_mset[simp]: “mset (sel_sort xs) = mset xs”

lemma “sorted (sel_sort xs)”

Homework 6.1 Cost of Selection Sort

Submission until Thursday, May 27, 23:59pm. Recall the selection sort from the tutorial
(which can be found in the Defs).
Define cost functions for the number of comparisons of sel_sort. For if/else, over-estimate
the cost by always choosing the more expensive branch.
fun T_find_min :: “ ′a::linorder list ⇒ nat”
fun T_sel_sort :: “ ′a::linorder list ⇒ nat”
lemma T_find_min_cmpx: “xs 6= [] =⇒ T_find_min xs = length xs − 1”

Try to find a closed formula for T_sel_sort yourself! (Hint: Should be O(n2))
If you struggle with finding a closed formula, on paper:

• Put up a recurrence equation (depending only on the length of the list)
• Solve the equation (Assume that the solution is an order-2 polynomial)

theorem T_sel_sort_cmpx: “T_sel_sort xs = undefined”

Homework 6.2 Sorting Networks

Submission until Thursday, May 27, 23:59pm.
Comparison networks are a model of parallel algorithms on fixed-size lists. A sorting
network is a specific comparison network that sorts its input lists.
A comparison network can be viewed as set of wires xi, one for each list element. Between
those wires are a number of comparators ci; each comparator is connected to two wires.
For Example (lists of size three):

2

x0---[]--------[]----
| c0 | c2

x1---[]---[]---[]----
| c1

x2--------[]---------

Each comparator will shift the greater element of its inputs up, and the smaller element
down.
We represent a network by a list of comparators, where each comparator is characterized
by the index of its wires – i.e., c0=(0,1), and after the applying c0, the greater element
will be at position of x1.
type_synonym comparator = “(nat × nat)”
type_synonym compnet = “comparator list”

Write a function to perform the computation of a single comparator on a ′a list. If the
comparator would compare elements out of the range of the input list, return the input
unchanged.
Hint: Use the existing list_update and nth functions. list_update also has nice snytax:
xs[0 := 1, 1 := 2]
definition compnet_step :: “comparator ⇒ ′a :: linorder list ⇒ ′a list”

Some test cases:
value “compnet_step (1,100) [1,2::nat] = [1,2]”
value “compnet_step (1,2) [1,3,2::nat] = [1,2,3]”

The whole network operation is now a step-wise fold over the comparators:
definition run_compnet :: “compnet ⇒ ′a :: linorder list ⇒ ′a list” where

“run_compnet = fold compnet_step”

Start by proving that compnets keep the mset unchanged.
theorem compnet_mset[simp]: “mset (run_compnet comps xs) = mset xs”

Sortedness is a bit more difficult. Define a sorting net for lists of length 4 first. Use at
most five comparators!
definition sort4 :: compnet
value “length sort4 ≤ 5”
value “run_compnet sort4 [4,2,1,3::nat] = [1,2,3,4]”

We want to prove that this definition is correct:
lemma “length ls = 4 =⇒ sorted (run_compnet sort4 ls)”

oops

However, doing that directly is not easily possible. But we can easily prove that it sorts
boolean lists, since there is only a finite number of those.

3

We use the all_n_lists to obtain a version of the lemma that doesn’t contain any free
variables, so that eval can prove it exhaustively. Then we show that this holds when
stated in the more obvious way.
lemma sort4_bool_exhaust: “all_n_lists (λbs::bool list. sorted (run_compnet sort4 bs)) 4”

— Should be provable by eval if your definition is correct!

lemma sort4_bool: “length (bs::bool list) = 4 =⇒ sorted (run_compnet sort4 bs)”
using sort4_bool_exhaust[unfolded all_n_lists_def] set_n_lists by fastforce

From that, we can show that our networks sorts any list – this is known as the zero-one
principle. First prove that the sorting does not change when mapped with a monotone
function (ctrl+click to see the definition of mono).
3 bonus points if you don’t use sledgehammered proof steps (i.e., using metis, smt, meson,
or moura) in the lemma or any required auxiliary theorem! To claim those points, mark
the lemma with (∗ clean ∗).

lemma compnet_map_mono:
assumes “mono f”
shows “run_compnet cs (map f xs) = map f (run_compnet cs xs)”

Now prove the zero-one principle.
Hint: Proof by contradiction. If you are stuck, look for a proof on paper in existing
literature!
theorem zero_one_principle:

assumes “
∧

bs:: bool list. length bs = length xs =⇒ sorted (run_compnet cs bs)”
shows “sorted (run_compnet cs xs)” (is “sorted ?rs”)

Finally, sortedness of the sort4 net follows (for any type).
corollary “length xs = 4 =⇒ sorted (run_compnet sort4 xs)”

by (simp add: sort4_bool zero_one_principle)

4

