
Technische Universität München SS 2021
Institut für Informatik 28. 5. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 7

Exercise 7.1 Round wrt. Binary Search Tree

The distance between two integers x and y is |x − y|.

1. Define a function round :: int tree ⇒ int ⇒ int option, such that round t x returns
an element of a binary search tree t with minimum distance to x, and None if and
only if t is empty.
Define your function such that it does no unnecessary recursions into branches of
the tree that are known to not contain a minimum distance element.

2. Specify and prove that your function is correct. Note: You are required to phrase
the correctness properties yourself!
Hint: Specify 3 properties:

• None is returned only for the empty tree.
• Only elements of the tree are returned.
• The returned element has minimum distance.

3. Estimate the time of your round function to be linear in the height of the tree

fun round :: “int tree ⇒ int ⇒ int option”
fun T_round :: “int tree ⇒ int ⇒ nat”

Exercise 7.2 Interval Lists

Sets of natural numbers can be implemented as lists of intervals, where an interval is
simply a pair of numbers. For example the set {2, 3, 5, 7 , 8, 9} can be represented
by the list [(2, 3), (5, 5), (7 , 9)]. A typical application is the list of free blocks of
dynamically allocated memory.

We introduce the type
type_synonym intervals = “(nat∗nat) list”

Next, define an invariant that characterizes valid interval lists: For efficiency reasons
intervals should be sorted in ascending order, the lower bound of each interval should

1

be less than or equal to the upper bound, and the intervals should be chosen as large
as possible, i.e. no two adjacent intervals should overlap or even touch each other. It
turns out to be convenient to define inv in terms of a more general function such that
the additional argument is a lower bound for the intervals in the list:
fun inv ′ :: “nat ⇒ intervals ⇒ bool”
definition inv where “inv ≡ inv ′ 0”

To relate intervals back to sets define an abstraction function
fun set_of :: “intervals ⇒ nat set”

Define a function to add a single element to the interval list, and show its correctness

fun add :: “nat ⇒ intervals ⇒ intervals”
lemma add_correct_1:

“inv is =⇒ inv (add x is)”
lemma add_correct_2:

“inv is =⇒ set_of (add x is) = insert x (set_of is)”

Hints:

• Sketch the different cases (position of element relative to the first interval of the
list) on paper first

• In one case, you will also need information about the second interval of the list.
Do this case split via an auxiliary function! Otherwise, you may end up with a
recursion equation of the form f (x#xs) = . . . case xs of x ′#xs ′ ⇒ . . . f (x ′#xs ′)
. . . combined with split: list.splits this will make the simplifier loop!

Homework 7.1 Set operations on extended open intervals

Submission until Thursday, June 3, 23:59pm.
In this exercise, we are considering intervals which are open on the right side. We also
allow unbounded interval, i.e. the right side can be ∞. For that, we use enats, which
are defined as natural numbers or ∞.
value “[1,∞)”

We adapt the invariant accordingly:
fun inv ′ :: “nat ⇒ intervals ⇒ bool” where

“inv ′ k [] = True”
| “inv ′ k [[l,∞)] = (k ≤ l)”
| “inv ′ k ([l,r)#ins) = (k≤l ∧ l<r ∧ inv ′ (Suc r) ins)”
| “inv ′ _ _ = False”

definition inv where “inv = inv ′ 0”

2

Define the set abstraction function. You can match the enat with two cases: ∞ and
n::nat. Caution: If you only match n (without type), this includes ∞ – but if you use
this n later in a function that expects a nat (say Suc n), then it will implicitly only
match nats.

fun set_of :: “intervals ⇒ nat set”

lemma “set_of [[4,10), [42,∞)] = {4..9} ∪ {42..}”
by (auto simp: numeral_eq_enat)

We now want to build the interval list for a sorted list of nats. Complete that definition:
fun list_intvls ′ :: “nat ⇒ nat ⇒ nat list ⇒ interval list”
definition “list_intervals xs = (case xs of [] ⇒ [] | (x#xs) ⇒ list_intvls ′ x (Suc x) xs)”

Prove correctness of list_intervals.
For those proofs, proceed as follows: First state the theorem in terms of inv ′, i.e.:

lemma list_intvls ′_inv[simp]: “sorted (x#xs) =⇒ l ≤ x =⇒ inv ′ l (list_intvls ′ l (Suc x) xs)”

Then show the theorem.
Hint: A monotonicity property on inv ′ may be useful, i.e., inv ′ m ins =⇒ inv ′ m ′ ins if
m ′ ≤ m
theorem list_intervals_inv: “sorted (x#xs) =⇒ inv (list_intervals (x#xs))”

theorem list_intervals_set: “sorted (x#xs) =⇒ set (x#xs) = set_of (list_intervals (x#xs))”

With these intervals, we can also define set operations that our previous definition did
not allow. Define the complement for an interval list (assume that inv holds).
fun compl ′ :: “nat ⇒ intervals ⇒ intervals”
definition compl :: “intervals ⇒ intervals”

Show your complement correct:

theorem compl_inv[simp]: “inv is =⇒ inv (compl is)”

theorem compl_set: “inv is =⇒ set_of (compl is) = −set_of is”

3

