Technische Universitdt Miinchen SS 2021
Institut fiir Informatik 11. 6. 2021
Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Indicate Unchanged by Option

Write an insert function for red-black trees that either inserts the element and returns
a new tree, or returns None if the element was already in the tree.

fun ins’ :: “a::linorder = 'a rbt = 'a rbt option”
lemma “invc t = case ins’ x t of None = insxt =t | Some t' = inszt =1t""

Exercise 9.2 Joining 2-3-Trees

Write a join function for complete 2-3-trees: The function shall take two 2-3-trees [and
r and an element z, and return a new 2-3-tree with the inorder-traversal [z 7.

Write two functions, one for the height of [being greater, the other for the height of r
being greater. The result should also be a complete tree, with height equal to the greater
height of [and r.

height r greater:

fun joinL :: “a tree23 = 'a = 'a tree23 = 'a upl”
lemma complete_joinL: “[complete I; complete r; height | < height r |
= complete (treel (joinL 1z r)) A kI (joinL l x r) = height r”

lemma inorder_joinL: “[complete l; complete r; height | < height r]
= inorder (treel (joinL | x 1)) = inorder | Qz # inorder r”

height | greater:

fun joinR :: “a tree23 = 'a = 'a tree23 = 'a upl”
lemma complete_joinR: “[complete l; complete r; height I > height r | =
complete (treel (joinR lx 1)) A hI(joinR | x r) = height 1”

lemma inorder_joinR: “| complete l; complete r; height | > height r | = inorder (treel (joinR
lzr)) = inorder | Qu # inorder r”

Combine both functions.

fun join :: “a tree23 = 'a = 'a tree23 = 'a tree23”
lemma “[complete l; complete r | = complete (join l z r)”

lemma “[complete l; complete r | = inorder (join | x r) = inorder | Qz # inorder r”

Homework 9.1 List to RBT

Submission until Thursday, June 17, 23:59pm.

In this task you are to define a function list _to rbt which constructs a red-black tree
that contains the members of a given list.

Hint:

This function could be constructed by composing two functions. The first is a function
that constructs an almost complete binary tree from a list (see the function balance_list
in HOL— Data__Structures. Balance) — a tree is almost complete if its minimum height
and its height differ by at most 1 (see acomplete in the file HOL— Library. Tree)

The second function, which is mk_ rbt, constructs the equivalent red-black tree to a given
almost complete binary tree:

fun mk_rbt :: “a tree = ‘a rbt” where

“mk_rbt () = ()7
| “mk_rbt (I, a, r) = (let

l'=mk__rbt I,
r'=mk_rbt r
m

if min__height | > min__height r then
B (paint Red l') a r’
else if min__height | < min__height r then
B’ a (paint Red 1)
else
Bllar’
) »

fun list _to rbt :: “a list = 'a rbt”

Hint: If you follow the hint above and construct the function list _to_rbt by composing
the functions mk_rbt and balance list, then a good idea to prove the theorems required
below is to prove lemmas about mk_rbt applied to almost complete trees, and then
leverage the results to get the theorems about list_to rbt

Warmup

Show the following alternative characterization of almost complete:

lemma acomplete_alt:

“acomplete t <— height t = min__height t V height t = min__height t + 17
The Easy Parts
Show that the inorder traversal of the tree constructed by list_to rbt is the same as the
given list:
lemma mk_rbt_inorder: “Tree2.inorder (list_to_rbt xs) = xs”

Show that the color of the root node is always black:

lemma mk_rbt_color: “color (list_to_rbt zs) = Black”

Medium Complex Parts
Show that the returned tree satisfies the height invariant.

lemma mk_rbt_invh: “invh (list_to_rbt xs)”

Hint: Use Isar to have better control on when to unfold with acomplete alt, and when to
use (e.g. to discharge the premises of the IH). Also, a useful lemma to prove is acomplete
2t = bheight (mk_rbt ?t) = min__height ?t.

The Hard Part (Bonus, 5 points)

Show that the returned tree satisfies the color invariant.

lemma mk_rbt_inve: “inve (list_to_rbt t)”

Hint: A useful lemma is acomplete ?t = invc (mk_rbt ?t). To prove it, combine case
splitting, automation and manual proof (Isar, aux-lemmas), in order to deal with the
multiple cases without a combinatorial explosion of the proofs.

