
Technische Universität München SS 2021
Institut für Informatik 11. 6. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Indicate Unchanged by Option

Write an insert function for red-black trees that either inserts the element and returns
a new tree, or returns None if the element was already in the tree.
fun ins ′ :: “ ′a::linorder ⇒ ′a rbt ⇒ ′a rbt option”
lemma “invc t =⇒ case ins ′ x t of None ⇒ ins x t = t | Some t ′⇒ ins x t = t ′”

Exercise 9.2 Joining 2-3-Trees

Write a join function for complete 2-3-trees: The function shall take two 2-3-trees l and
r and an element x, and return a new 2-3-tree with the inorder-traversal l x r.
Write two functions, one for the height of l being greater, the other for the height of r
being greater. The result should also be a complete tree, with height equal to the greater
height of l and r.

height r greater:
fun joinL :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinL: “[[ complete l; complete r ; height l < height r ]]
=⇒ complete (treeI (joinL l x r)) ∧ hI (joinL l x r) = height r”

lemma inorder_joinL: “[[ complete l; complete r ; height l < height r ]]
=⇒ inorder (treeI (joinL l x r)) = inorder l @x # inorder r”

height l greater:
fun joinR :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinR: “[[ complete l; complete r ; height l > height r ]] =⇒

complete (treeI (joinR l x r)) ∧ hI (joinR l x r) = height l”

lemma inorder_joinR: “[[ complete l; complete r ; height l > height r ]] =⇒ inorder (treeI (joinR
l x r)) = inorder l @x # inorder r”

Combine both functions.

1



fun join :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a tree23”
lemma “[[ complete l; complete r ]] =⇒ complete (join l x r)”

lemma “[[ complete l; complete r ]] =⇒ inorder (join l x r) = inorder l @x # inorder r”

Homework 9.1 List to RBT

Submission until Thursday, June 17, 23:59pm.
In this task you are to define a function list_to_rbt which constructs a red-black tree
that contains the members of a given list.

Hint:
This function could be constructed by composing two functions. The first is a function
that constructs an almost complete binary tree from a list (see the function balance_list
in HOL−Data_Structures.Balance) – a tree is almost complete if its minimum height
and its height differ by at most 1 (see acomplete in the file HOL−Library.Tree)
The second function, which is mk_rbt, constructs the equivalent red-black tree to a given
almost complete binary tree:
fun mk_rbt :: “ ′a tree ⇒ ′a rbt” where

“mk_rbt 〈〉 = 〈〉”
| “mk_rbt 〈l, a, r〉 = (let

l ′=mk_rbt l;
r ′=mk_rbt r

in
if min_height l > min_height r then

B (paint Red l ′) a r ′

else if min_height l < min_height r then
B l ′ a (paint Red r ′)

else
B l ′ a r ′

)”

fun list_to_rbt :: “ ′a list ⇒ ′a rbt”

Hint: If you follow the hint above and construct the function list_to_rbt by composing
the functions mk_rbt and balance_list, then a good idea to prove the theorems required
below is to prove lemmas about mk_rbt applied to almost complete trees, and then
leverage the results to get the theorems about list_to_rbt

Warmup

Show the following alternative characterization of almost complete:
lemma acomplete_alt:

2



“acomplete t ←→ height t = min_height t ∨ height t = min_height t + 1”

The Easy Parts

Show that the inorder traversal of the tree constructed by list_to_rbt is the same as the
given list:

lemma mk_rbt_inorder : “Tree2.inorder (list_to_rbt xs) = xs”

Show that the color of the root node is always black:

lemma mk_rbt_color : “color (list_to_rbt xs) = Black”

Medium Complex Parts

Show that the returned tree satisfies the height invariant.

lemma mk_rbt_invh: “invh (list_to_rbt xs)”

Hint: Use Isar to have better control on when to unfold with acomplete_alt, and when to
use (e.g. to discharge the premises of the IH). Also, a useful lemma to prove is acomplete
?t =⇒ bheight (mk_rbt ?t) = min_height ?t.

The Hard Part (Bonus, 5 points)

Show that the returned tree satisfies the color invariant.

lemma mk_rbt_invc: “invc (list_to_rbt t)”

Hint: A useful lemma is acomplete ?t =⇒ invc (mk_rbt ?t). To prove it, combine case
splitting, automation and manual proof (Isar, aux-lemmas), in order to deal with the
multiple cases without a combinatorial explosion of the proofs.

3


