Functional Data Structures

Exercise Sheet 11

Exercise 11.1 Insert for Leftist Heap

- Define a function to directly insert an element into a leftist heap. Do not construct an intermediate heap like insert via merge does!
- Show that your function is correct
- Define a timing function for your insert function, and show that it is linearly bounded by the rank of the tree.

fun *lh_insert* :: "'a::ord \Rightarrow 'a *lheap* \Rightarrow 'a *lheap*"

lemma set_lh_insert: "set_tree $(lh_insert \ x \ t) = set_tree \ t \cup \{x\}$ " **lemma** "heap $t \Longrightarrow$ heap $(lh_insert \ x \ t)$ " **lemma** "ltree $t \Longrightarrow$ ltree $(lh_insert \ x \ t)$ "

fun $t_lh_insert :: "'a::ord \Rightarrow 'a lheap \Rightarrow nat"$

lemma "ltree $t \Longrightarrow t_lh_insert x t \le min_height t + 1$ "

Exercise 11.2 Bootstrapping a Priority Queue

Given a generic priority queue implementation with O(1) empty, is_empty operations, $O(f_1 \ n)$ insert, and $O(f_2 \ n)$ get_min and del_min operations.

Derive an implementation with O(1) get_min, and the asymptotic complexities of the other operations unchanged!

Hint: Store the current minimal element! As you know nothing about f_1 and f_2 , you must not use get_min/del_min in your new *insert* operation, and vice versa!

For technical reasons, you have to define the new implementations type outside the locale!

datatype ('a,'s) $bs_pq =$

locale Bs_Priority_Queue =
 orig: Priority_Queue where
 empty = orig_empty and

```
is\_empty = orig\_is\_empty and

insert = orig\_insert and

get\_min = orig\_get\_min and

del\_min = orig\_del\_min and

invar = orig\_invar and

mset = orig\_mset

for orig\_empty orig\_is\_empty orig\_insert orig\_get\_min orig\_del\_min orig\_invar

and orig\_mset :: "'s \Rightarrow 'a::linorder multiset"

begin
```

In here, the original implementation is available with the prefix *orig*, e.g.

```
term orig\_empty term orig\_invar
thm orig.invar\_empty
definition empty :: "('a,'s) bs\_pq"
fun is\_empty :: "('a,'s) bs\_pq \Rightarrow bool"
fun insert :: "'a \Rightarrow ('a,'s) bs\_pq \Rightarrow ('a,'s) bs\_pq"
fun get\_min :: "('a,'s) bs\_pq \Rightarrow ('a,'s) bs\_pq"
fun del\_min :: "('a,'s) bs\_pq \Rightarrow ('a,'s) bs\_pq"
fun invar :: "('a,'s) bs\_pq \Rightarrow ('a,'s) bs\_pq"
fun invar :: "('a,'s) bs\_pq \Rightarrow (a multiset"
lemmas [simp] = orig.is\_empty orig.mset\_get\_min orig.mset\_del\_min
orig.mset\_insert orig.mset\_empty
orig.invar\_empty orig.invar\_del\_min
```

Show that your new implementation satisfies the priority queue interface!

sublocale Priority_Queue
where empty = empty
and is_empty = is_empty
and insert = insert
and get_min = get_min
and del_min = del_min
and invar = invar
and mset = mset
apply unfold_locales
proof goal_cases

Homework 11.1 Converting a binary tree into a heap

Submission until Thursday, 1. 7. 2021, 23:59pm.

The following predicate describes the heap property for a binary tree.

fun heap:: "'a::linorder tree \Rightarrow bool" **where** "heap Leaf = True" | "heap (Node l x r) = ((\forall y \in set_tree l. x \le y) \land (\forall y \in set_tree r. x \le y) \land heap l \land heap r)" Recall the function *sift_down* from the AFP entry *Priority_Queue_Braun*. Define an equivalent function for sifting the root of a binary tree. Hint: that function will need to include extra cases that account for the fact that, unlike a Braun tree, a binary tree is not necessarily balanced.

fun siftdown:: "'a::linorder tree \Rightarrow 'a::linorder tree"

Define a function *heapify* which, given a binary tree, reorders the elements of the binary tree into a heap. That function has to use the function $sift_down$. Show that the function indeed creates a heap and that it preserves the elements in the given binary tree.

fun heapify :: "'a::linorder tree \Rightarrow 'a::linorder tree"

theorem heapify_heap: "heap (heapify t)" **theorem** heapify_mset: "mset (inorder (heapify t)) = mset (inorder t)"

Homework 11.2 Be Original!

Submission until Thursday, July 8, 23:59pm.

Develop a nice Isabelle formalisation yourself!

- This homework goes in parallel to other homeworks for most of the remaining lecture period. We will reduce regular homework load (the sheets are half the size/points), such that you have a time-frame of 3 weeks with reduced regular homework load. You should have formalized key concepts of your topic until next week.
- The homework will yield 15 points (for minimal solutions). Additionally, up to 15 bonus points may be awarded for particularly nice/original/etc solutions.
- You may develop a formalisation from all areas, not only functional data structures.
- Document your solution, such that it is clear what you have formalised and what your main theorems state!
- Set yourself a time frame and some intermediate/minimal goals. Your formalisation needs not be universal and complete after 3 weeks.
- Should you still need inspiration to find a project: Sparse matrices, skew binary numbers, arbitrary precision arithmetic (on lists of bits), interval data structures (e.g. interval lists), spatial data structures (quad-trees, oct-trees), Fibonacci heaps, prefix tries/arrays and BWT, etc. You can also ask the tutor for possible ideas, and you are encouraged to discuss the realisability of your project with us!