
Technische Universität München SS 2021
Institut für Informatik 25. 6. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 11

Exercise 11.1 Insert for Leftist Heap

• Define a function to directly insert an element into a leftist heap. Do not construct
an intermediate heap like insert via merge does!

• Show that your function is correct
• Define a timing function for your insert function, and show that it is linearly

bounded by the rank of the tree.

fun lh_insert :: “ ′a::ord ⇒ ′a lheap ⇒ ′a lheap”

lemma set_lh_insert: “set_tree (lh_insert x t) = set_tree t ∪ {x}”
lemma “heap t =⇒ heap (lh_insert x t)”
lemma “ltree t =⇒ ltree (lh_insert x t)”

fun t_lh_insert :: “ ′a::ord ⇒ ′a lheap ⇒ nat”

lemma “ltree t =⇒ t_lh_insert x t ≤ min_height t + 1”

Exercise 11.2 Bootstrapping a Priority Queue

Given a generic priority queue implementation with O(1) empty, is_empty operations,
O(f 1 n) insert, and O(f 2 n) get_min and del_min operations.
Derive an implementation with O(1) get_min, and the asymptotic complexities of the
other operations unchanged!
Hint: Store the current minimal element! As you know nothing about f 1 and f 2, you
must not use get_min/del_min in your new insert operation, and vice versa!

For technical reasons, you have to define the new implementations type outside the
locale!
datatype (′a, ′s) bs_pq =

locale Bs_Priority_Queue =
orig: Priority_Queue where

empty = orig_empty and

1

is_empty = orig_is_empty and
insert = orig_insert and
get_min = orig_get_min and
del_min = orig_del_min and
invar = orig_invar and
mset = orig_mset

for orig_empty orig_is_empty orig_insert orig_get_min orig_del_min orig_invar
and orig_mset :: “ ′s ⇒ ′a::linorder multiset”

begin

In here, the original implementation is available with the prefix orig, e.g.
term orig_empty term orig_invar
thm orig.invar_empty

definition empty :: “(′a, ′s) bs_pq”
fun is_empty :: “(′a, ′s) bs_pq ⇒ bool”
fun insert :: “ ′a ⇒ (′a, ′s) bs_pq ⇒ (′a, ′s) bs_pq”
fun get_min :: “(′a, ′s) bs_pq ⇒ ′a”
fun del_min :: “(′a, ′s) bs_pq ⇒ (′a, ′s) bs_pq”
fun invar :: “(′a, ′s) bs_pq ⇒ bool”
fun mset :: “(′a, ′s) bs_pq ⇒ ′a multiset”
lemmas [simp] = orig.is_empty orig.mset_get_min orig.mset_del_min

orig.mset_insert orig.mset_empty
orig.invar_empty orig.invar_insert orig.invar_del_min

Show that your new implementation satisfies the priority queue interface!
sublocale Priority_Queue

where empty = empty
and is_empty = is_empty
and insert = insert
and get_min = get_min
and del_min = del_min
and invar = invar
and mset = mset
apply unfold_locales

proof goal_cases

Homework 11.1 Converting a binary tree into a heap

Submission until Thursday, 1. 7. 2021, 23:59pm.

The following predicate describes the heap property for a binary tree.
fun heap::“ ′a::linorder tree ⇒ bool” where

“heap Leaf = True”
| “heap (Node l x r) = ((∀ y∈set_tree l. x ≤ y) ∧ (∀ y∈set_tree r . x ≤ y) ∧ heap l ∧ heap r)”

2

Recall the function sift_down from the AFP entry Priority_Queue_Braun. Define an
equivalent function for sifting the root of a binary tree. Hint: that function will need to
include extra cases that account for the fact that, unlike a Braun tree, a binary tree is
not necessarily balanced.
fun siftdown::“ ′a::linorder tree ⇒ ′a::linorder tree”

Define a function heapify which, given a binary tree, reorders the elements of the binary
tree into a heap. That function has to use the function sift_down. Show that the
function indeed creates a heap and that it preserves the elements in the given binary
tree.
fun heapify :: “ ′a::linorder tree ⇒ ′a::linorder tree”

theorem heapify_heap: “heap (heapify t)”
theorem heapify_mset: “mset (inorder (heapify t)) = mset (inorder t)”

Homework 11.2 Be Original!

Submission until Thursday, July 8, 23:59pm.
Develop a nice Isabelle formalisation yourself!

• This homework goes in parallel to other homeworks for most of the remaining
lecture period. We will reduce regular homework load (the sheets are half the
size/points), such that you have a time-frame of 3 weeks with reduced regular
homework load. You should have formalized key concepts of your topic until next
week.

• The homework will yield 15 points (for minimal solutions). Additionally, up to 15
bonus points may be awarded for particularly nice/original/etc solutions.

• You may develop a formalisation from all areas, not only functional data structures.
• Document your solution, such that it is clear what you have formalised and what

your main theorems state!
• Set yourself a time frame and some intermediate/minimal goals. Your formalisation

needs not be universal and complete after 3 weeks.
• Should you still need inspiration to find a project: Sparse matrices, skew binary

numbers, arbitrary precision arithmetic (on lists of bits), interval data structures
(e.g. interval lists), spatial data structures (quad-trees, oct-trees), Fibonacci heaps,
prefix tries/arrays and BWT, etc. You can also ask the tutor for possible ideas,
and you are encouraged to discuss the realisability of your project with us!

3

