
Technische Universität München SS 2021
Institut für Informatik 2. 8. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 12

Exercise 12.1 Sparse Binary Numbers

Implement operations carry, inc, and add on sparse binary numbers, analogously to the
operations link, ins, and merge on binomial heaps.
Show that the operations have logarithmic worst-case complexity.
type_synonym rank = nat
type_synonym snat = “rank list”

abbreviation invar :: “snat ⇒ bool” where “invar s ≡ sorted_wrt (<) s”
definition α :: “snat ⇒ nat” where “α s = sum_list (map ((^) 2) s)”

lemmas [simp] = sorted_wrt_append

fun carry :: “rank ⇒ snat ⇒ snat”

lemma carry_invar [simp]:
assumes “invar rs”
shows “invar (carry r rs)”

lemma carry_α:
assumes “invar rs”

and “∀ r ′∈set rs. r≤r ′”
shows “α (carry r rs) = 2^r + α rs”

definition inc :: “snat ⇒ snat”

lemma inc_invar [simp]: “invar rs =⇒ invar (inc rs)”

lemma inc_α[simp]: “invar rs =⇒ α (inc rs) = Suc (α rs)”

fun add :: “snat ⇒ snat ⇒ snat”

lemma add_invar [simp]:
assumes “invar rs1”

and “invar rs2”
shows “invar (add rs1 rs2)”

1

lemma add_α[simp]:
assumes “invar rs1”

and “invar rs2”
shows “α (add rs1 rs2) = α rs1 + α rs2”

thm sorted_wrt_less_sum_mono_lowerbound

lemma size_snat:
assumes “invar rs”
shows “2^length rs ≤ α rs + 1”

fun T_carry :: “rank ⇒ snat ⇒ nat”

definition T_inc :: “snat ⇒ nat”

lemma T_inc_bound:
assumes “invar rs”
shows “T_inc rs ≤ log 2 (α rs + 1) + 1”

fun T_add :: “snat ⇒ snat ⇒ nat”

lemma T_add_bound:
fixes rs1 rs2
defines “n1 ≡ α rs1”
defines “n2 ≡ α rs2”
assumes INVARS : “invar rs1” “invar rs2”
shows “T_add rs1 rs2 ≤ 4∗log 2 (n1 + n2 + 1) + 2”

Homework 12 Explicit Priorities

Submission until Thursday, July 8, 23:59pm.
Modify the priority queue interface to handle multisets of pairs of data and priority, i.e.,
the new mset function has the signature mset:: ′q ⇒ (′d× ′a::linorder) multiset.
Next, implement the new interface using leftist heaps. Implement them with rank instead
of min_height!
Hints:

• Start with content from the existing theories (HOL−Data_Structures.Priority_Queue_Specs
and HOL−Data_Structures.Leftist_Heap), and modify them!

• Be careful to design a good specification for get_min!

2

Homework 12.1 Be Original!

Submission until Thursday, July 8, 23:59pm.
Develop a nice Isabelle formalisation yourself!
We will reduce regular homework load (the sheets are half the size/points), such that
you have a time-frame of 3 weeks with reduced regular homework load. You should have
finished your formalization until next week. Submit it either via the Submission system
(if it’s a single theory file – import Defs as first import!) or via email to the tutor.

• The homework will yield 15 points (for minimal solutions). Additionally, up to 15
bonus points may be awarded for particularly nice/original/etc solutions.

• You may develop a formalisation from all areas, not only functional data structures.
• Document your solution, such that it is clear what you have formalised and what

your main theorems state!
• Set yourself a time frame and some intermediate/minimal goals. Your formalisation

needs not be universal and complete after 3 weeks.
• Should you still need inspiration to find a project: Sparse matrices, skew binary

numbers, arbitrary precision arithmetic (on lists of bits), interval data structures
(e.g. interval lists), spatial data structures (quad-trees, oct-trees), Fibonacci heaps,
prefix tries/arrays and BWT, etc. You can also ask the tutor for possible ideas,
and you are encouraged to discuss the realisability of your project with us!

3

