
Technische Universität München SS 2021
Institut für Informatik 9. 7. 2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 13

Presentation of Mini-Projects:
You are invited, on a voluntary basis, to give a short presentation of your mini-projects
in the tutorial on July 16.
Depending on how many presentations we have, the time slots will be 5 to 10 minutes,
plus 2 minutes for questions.
If you are interested, please write me a short email until Wednesday.

The following are old exam questions!

Exercise 13.1 Amortized Complexity

A “stack with multipop” is a list with the following two interface functions:
fun push :: “ ′a ⇒ ′a list ⇒ ′a list” where
“push x xs = x # xs”

fun pop :: “nat ⇒ ′a list ⇒ ′a list” where
“pop n xs = drop n xs”

You may assume
definition T_push :: “ ′a ⇒ ′a list ⇒ nat” where
“T_push x xs = 1”

definition T_pop :: “nat ⇒ ′a list ⇒ nat” where
“T_pop n xs = min n (length xs)”

Use the potential method to show that the amortized complexity of push and pop is
constant.
If you need any properties of the auxiliary functions length, drop and min, you should
state them but you do not need to prove them.

Exercise 13.2 Converting List for Balanced Insert

Recall the standard insertion function for unbalanced binary search trees.

1



fun insert :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree” where
“insert x Leaf = Node Leaf x Leaf” |
“insert x (Node l a r) =
(case cmp x a of

LT ⇒ Node (insert x l) a r |
EQ ⇒ Node l a r |
GT ⇒ Node l a (insert x r))”

We define the function from_list, which inserts the elements of a list into an initially
empty search tree:
definition from_list :: “ ′a::linorder list ⇒ ′a tree” where

“from_list l = fold insert l Leaf”

Your task is to specify a function preprocess:: ′a, that preprocesses the list such that the
resulting tree is almost complete.
You may assume that the list is sorted, distinct, and has exactly 2^k − 1 elements for
some k. That is, your preprocess function must satisfy:

fun preprocess :: “ ′a list ⇒ ′a list”

lemma
assumes “sorted l”

and “distinct l”
and “length l = 2^k−1”

shows “set (preprocess l) = set l” and “acomplete (from_list (preprocess l))”

Note: No proofs required, only a specification of the preprocess function!

Exercise 13.3 Trees with Same Structure

Question 1
Specify the recursion equations of a function same that returns true if and only if the
two trees have the same structure (i.e., ignoring values).
fun same :: “ ′a tree ⇒ ′a tree ⇒ bool”

Question 2
Show, by computation induction wrt. same, that insertion of arbitrary elements into two
Braun heaps with the same structure yields heaps with the same structure again.
For your proof, it is enough to cover the (Node,Node) case. If you get analogous sub-
cases, only elaborate one of them!
Hint: Here is the definition of Tree_Set.insert:
fun insert :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree” where

2



“insert a Leaf = Node Leaf a Leaf” |
“insert a (Node l x r) =
(if a < x then Node (insert x r) a l else Node (insert a r) x l)”

lemma same_insert: “same t t ′ =⇒ same (insert x t) (insert y t ′)”

Homework 13.1 A counter with increment and decrement operations

Submission until Thursday, July 14, 23:59pm.

A k-bit counter can be formalised as a list of booleans. An increment operation for such
a counter is defined as follows:
fun incr :: “bool list ⇒ bool list” where
“incr [] = []” |
“incr (False#bs) = True # bs” |
“incr (True#bs) = False # incr bs”

The running time of this increment operation can be defined as follows:
fun T_incr :: “bool list ⇒ nat” where
“T_incr [] = 0” |
“T_incr (False#bs) = 1” |
“T_incr (True#bs) = T_incr bs + 1”

For such a k-bit counter with only an increment operation, an amortised analysis of the
running time of a sequence of n increment operations reveals it is O(n). However, if the
counter has a decrement operation, then for a sequence of n operations, a lower bound
for the running time must be at least linear in the product nk. This holds regardless
of the time required to perform the decrement operation. In fact this holds for any
operation decr satisfying the following two assumption:
decr ((replicate (k−1) False) @ [True]) = (replicate (k−(Suc 0)) True) @ [False]
length (decr bs) = length bs
Above, replicate n x is the list [x, ..., x] of length n. The following locale specifies a
counter with such an operation.
locale counter_with_decr =

fixes decr ::“bool list ⇒ bool list” and k::“nat”
assumes

decr [simp]: “decr ((replicate (k−(Suc 0)) False) @ [True]) =
(replicate (k−(Suc 0)) True) @ [False]” and

decr_len_eq[simp]: “length (decr bs) = length bs” and
k[simp]: “1 ≤ k”

begin

In this homework you are required to show that indeed the running time of a sequence of
operations of length n is Θ(nk). You can assume that the running time of the decrement
operation is 1.
fun T_decr ::“bool list ⇒ nat” where

3



“T_decr _ = 1”

To prove the required running time, you will need to prove an upper and a lower bound
on the running time that are linear in nk. To prove either bound, you will need to reason
about lists whose elements are of the type op. Such lists correspond to lists of operations
on the counter.
datatype op = Decr | Incr

The running time of a list of operations is given by the function T_exec, is defined as
follows:
fun exec1::“op ⇒ (bool list ⇒ bool list)” where

“exec1 Incr = incr” |
“exec1 Decr = decr”

fun T_exec1::“op ⇒ (bool list ⇒ nat)” where
“T_exec1 Incr = T_incr” |
“T_exec1 Decr = T_decr”

fun T_exec :: “op list ⇒ bool list ⇒ nat” where
“T_exec [] bs = 0” |
“T_exec (op # ops) bs = (T_exec1 op bs + T_exec ops (exec1 op bs))”

Prove the following upper bound on the running time of sequences of operations:

theorem inc_dec_seq_ubound: “length bs = k =⇒ T_exec ops bs ≤ (length ops) ∗ length bs”

To prove the lower bound, you will need to define a function oplist that, given a natural
number n, constructs a list of operations whose running time is at least linear in nk for
at least one counter initial configuration, bs0.

fun oplist :: “nat ⇒ op list”

definition bs0

You are required to prove the following lower bound. The two-element list induction
scheme and nat case distinction might be helpful.
lemma induct_list012[case_names empty single multi]:

“P [] =⇒ (
∧

x. P [x]) =⇒ (
∧

x y xs. P xs =⇒ P (x#y#xs)) =⇒ P xs”
by (rule List.induct_list012)

lemma case_nat012[case_names zero one two]:
“[[n = 0 =⇒ P; n = 1 =⇒ P;

∧
n ′. n = Suc (Suc n ′) =⇒ P]] =⇒ P”

by (metis One_nat_def nat.exhaust)

theorem inc_dec_seq_lbound: “n ∗ k ≤ 2 ∗ (T_exec (oplist n) bs0)”

4


