
Tobias Nipkow, Jasmin Blanchette,
Manuel Eberl, Alejandro Gómez-Londoño
Peter Lammich, Christian Sternagel,
Simon Wimmer, Bohua Zhan

Functional Algorithms,
Verified!

April 4, 2021

Preface

This book is an introduction to data structures and algorithms for functional
languages, with a focus on proofs. It covers both functional correctness and
running time analysis. It does so in a unified manner with inductive proofs
about functional programs and their running time functions.

The unique feature of this book is that all the proofs have been machine-
checked by the proof assistant Isabelle. That is, in addition to the text in
the book, which requires no knowledge of proof assistants, there are the
Isabelle definitions and proofs that can be accessed by following (in the PDF
file) the links attached to section headings with a symbol. Our message:

Proof assistants are the right tools for truly trustworthy proofs
about efficient algorithms.

This book has been classroom-tested for a number of years in a course
for graduate and advanced undergraduate students. At the same time it is a
reference for programmers and researchers who are interested in the details
of some algorithm or proof.

Isabelle

Isabelle [63, 76, 57] is a proof assistant for the logic HOL (= Higher-Order
Logic), which is why the system is often called Isabelle/HOL. HOL is a gen-
eralization of first-order logic: functions can be passed as parameters and
returned as results, just as in functional programming, and they can be quan-
tified over. Isabelle’s version of HOL also supports a simple version of Haskell’s
type classes.

As emphasized above, the reader need not be familiar with Isabelle or
HOL in order to read this book. However, to take full advantage of our proof

http://isabelle.in.tum.de/

4 Preface

assistant approach, readers are encouraged to learn how to write Isabelle def-
initions and proofs themselves — and to solve some of the exercises in this
book. To this end we recommend the tutorial Programming and Proving in
Isabelle/HOL [52], which is also Part I of the book Concrete Semantics [56].

Prerequisites

We expect the reader to be familiar with

• the basics of discrete mathematics: propositional and first-order logic, sets
and relations, proof principles including induction;

• a typed functional programming language like Haskell [27], OCaml [60] or
Standard ML [64];

• simple inductive proofs about functional programs.

Under Development

This book is meant to grow. New chapters are meant to be added over time.
The list of authors is meant to grow — you could become one of them!

Colour

For the quick orientation of the reader, definitions are displayed in coloured
boxes:

These boxes display functional programs.

These boxes display auxiliary definitions.

From a logical point of view there is no difference between the two kinds of
definitions except that auxiliary definitions need not be executable.

Acknowledgements We are obviously indebted to the books by Cormen et
al. [13] and Okasaki [62]. Mohammad Abdulaziz, Magnus Myreen and Larry
Paulson commented on parts of the book. We are very grateful to all of them.

Contents

1 Basics . 7

Part I Sorting and Selection

2 Sorting . 19

3 Selection . 35

Part II Search Trees

4 Binary Trees . 49

5 Binary Search Trees . 61

6 Abstract Data Types . 75

7 2-3 Trees . 81

8 Red-Black Trees . 91

9 AVL Trees . 101

10 Beyond Insert and Delete: [, \ and � . 113

11 Arrays via Braun Trees . 121

12 Tries . 143

13 Huffman’s Algorithm . 151

6 Contents

Part III Priority Queues

14 Priority Queues . 165

15 Leftist Heaps . 169

16 Priority Queues via Braun Trees . 173

17 Binomial Heaps . 177

Part IV Advanced Design and Analysis Techniques

18 Dynamic Programming . 189

19 Amortized Analysis . 209

20 Queues . 213

21 Splay Trees . 225

22 Skew Heaps . 233

23 Pairing Heaps . 237

Part V Appendix

A List Library . 247

B Time Functions . 251

C Notation . 259

References . 265

Index . 271

1

Basics

In this chapter we describe the basic building blocks the book rests on.

Programs: The functional programming language we use is merely sketched
because of its similarity with other well known functional languages.

Predefined types and notation: We introduce the basic predefined types
and notations used in the book.

Inductive proofs: Although we do not explain proofs in general, we make
an exception for certain inductive proofs.

Running time: We explain how we model running time by step counting
functions.

1.1 Programs

The programs in this book are written in Isabelle’s functional programming
language which provides recursive algebraic data types (keyword: datatype),
recursive function definitions and let, if and case expressions. The language is
sufficiently close to a number of similar typed functional languages (SML [64],
OCaml [60], Haskell [27]) to obviate the need for a detailed explanation. More-
over, Isabelle can generate SML, OCaml, Haskell and Scala code [24]. What
distinguishes Isabelle’s functional language from ordinary programming lan-
guages is that all functions in Isabelle must terminate. Termination must be
proved. For all the functions in this book, termination is not difficult to see
and Isabelle can prove it automatically. (If you want to go beyond, consult
the function definition tutorial [43].)

Isabelle’s functional language is pure logic. All language elements have
precise definitions. However, this book is about algorithms, not programming
language semantics. A functional programmer’s intuition suffices for reading
it. (If you want to know more about the logical basis see [7, 44, 26].)

8 1 Basics

A useful bit of notation: any infix operator can be turned into a function
by enclosing it in parentheses, e.g. (+).

1.2 Types

Type variables are denoted by 0a, 0b, etc. The function type arrow is).
Type constructor names follow their argument types, e.g. 0a list . The notation
t :: � means that term t has type � . The following types are predefined.

Booleans

Type bool comes with the constants True and False and the usual operations.

Numbers

There are three numeric types: the natural numbers nat (0, 1, . . .), the inte-
gers int and the real numbers real. They correspond to the mathematical sets
N, Z and R and not to any machine arithmetic. All three types come with the
usual (overloaded) operations.

Sets

The type 0a set of sets (finite and infinite) over type 0a comes with the
standard mathematical operations. The minus sign “�”, unary or binary, can
denote set complement or difference.

Lists

The type 0a list of lists whose elements are of type 0a is a recursive data type:

datatype 0a list = Nil j Cons 0a (0a list)

Constant Nil represents the empty list and Cons x xs represents the list with
first element x, the head, and rest list xs, the tail. The following syntactic
sugar is sprinkled on top;

[] � Nil
x # xs � Cons x xs

[x 1; : : : ; xn] � x 1 # : : : # xn # []

The � symbol means that the left-hand side is merely an abbreviation of the
right-hand side.

A library of predefined functions on lists is shown in Appendix A. The
length of a list xs is denoted by jxs j.

1.2 Types 9

Type 0a option

The data type 0a option is defined as follows:

datatype 0a option = None j Some 0a

Pairs and Tuples

Pairs are written (a ; b). Functions fst and snd select the first and second
component of a pair: fst (a ; b) = a and snd (a ; b) = b. The type unit
contains only a single element (), the empty tuple.

1.2.1 Pattern Matching

Functions are defined by equations and pattern matching, for example over
lists. Natural numbers may also be used in pattern-matching definitions:

fib (n + 2) = fib (n + 1) + fib n

Occasionally we use an extension of pattern matching where patterns can
be named. For example, the defining equation

f (x # (y # zs =: ys)) = ys @ zs

introduces a variables ys on the left that stands for y # zs and can be referred
to on the right. Logically it is just an abbreviation of

f (x # y # zs) = (let ys = y # zs in ys @ zs)

although it is suggestive of a more efficient interpretation. The general format
is pattern =: variable.

1.2.2 Numeric Types and Coercions

The numeric types nat, int and real are all distinct. Converting between them
requires explicit coercion functions, in particular the inclusion functions int
:: nat) int and real :: nat) real that do not lose any information (in
contrast to coercions in the other direction). We do not show inclusions unless
they make a difference. For example, (m + n) :: real, where m ; n :: nat, is
mathematically unambiguous because real (m + n) = real m + real n. On
the other hand, (m � n) :: real is ambiguous because real (m � n) 6= real m
� real n because (0::nat) � n = 0. In some cases we can also drop coercions
that are not inclusions, e.g. nat :: int) nat, which coerces negative integers
to 0: if we know that i � 0 then we can drop the nat in nat i.

We prefer type nat over type real for ease of (Isabelle) proof. For example,
for m ; n :: nat we prefer m � 2n over lg m � n.

10 1 Basics

1.2.3 Multisets

Informally, a multiset is a set where elements can occur multiple times. Mul-
tisets come with the following operations:

{{}} :: 0a multiset
(2#) :: 0a) 0a multiset) bool

add_mset :: 0a) 0a multiset) 0a multiset
(+) :: 0a multiset) 0a multiset) 0a multiset
size :: 0a multiset) nat

mset :: 0a list) 0a multiset
set_mset :: 0a multiset) 0a set

image_mset :: (0a) 0b)) 0a multiset) 0b multiset
filter_mset :: (0a) bool)) 0a multiset) 0b multiset
sum_mset :: 0a multiset) 0a

Their meaning: {{}} is the empty multiset; (2#) is the element test; add_mset
adds an element to a multiset; (+) is the union of two multisets, where multi-
plicities of elements are added; size M, written jM j, is the number of elements
in M, taking multiplicities into account; mset converts a list into a multiset
by forgetting about the order of elements; set_mset converts a multiset into a
set; image_mset applies a function to all elements of a multiset; filter_mset
removes all elements from a multiset that do not satisfy the given predicate;
sum_mset is the sum of the values of a multiset, the iteration of (+) (taking
multiplicity into account). Note that the instance sum_mset :: 0a multiset
multiset) 0a multiset takes the union of a multiset of multisets.

We use some additional suggestive syntax for some of these operations:

{{x 2# M j P x}} � filter_mset P M
{{f x j x 2# M}} � image_mset f MP

#
M � sum_mset MP

x2#M f x � sum_mset (image_mset f M)

See Section C.3 in the appendix for an overview of such syntax.

1.3 Notation

We adopt the following notation:

• The type of functions 0a) 0b comes with a predefined pointwise update
operation with its own notation:

f (a := b) = (�x : if x = a then b else f x)

1.4 Proofs 11

• Function lg is the binary logarithm.

We deviate from Isabelle’s notation in favour of standard mathematics in
a number of points:

• There is only one implication: =) is printed as �! and P =) Q =) R
is printed as P ^ Q �! R.

• Multiplication is printed as x � y.
• Exponentation is uniformly printed as xy.
• We sweep under the carpet that type nat is defined as a recursive data

type: datatype nat = 0 j Suc nat. In particular, constructor Suc is hid-
den: Suck 0 is printed as k and Suck n (where n is not 0) is printed as
n + k .

• Set comprehension syntax is the canonical fx j Pg.
The reader who consults the Isabelle theories referred to in this book should
be aware of these discrepancies.

1.4 Proofs

Proofs are the raison d’être of this book. Thus we present them in more
detail than is customary in a book on algorithms. However, not all proofs:

• We omit proofs of simple properties of numbers, lists, sets and multisets,
our predefined types. Obvious properties (e.g. jxs @ ys j = jxs j + jys j or
commutativity of [) are used implicitly without proof.

• With some exceptions, we only state properties if their proofs require
induction, in which case we will say so, and we will always indicate which
supporting properties were used.

• If a property is simply described as “inductive” or its proof is described by a
phrase like “by an easy/automatic induction” it means that in the Isabelle
proofs all cases of the induction were automatic, typically by simplification.

As a simple example of an easy induction consider the append function

(@) :: 0a list) 0a list) 0a list

[] @ ys = ys
(x # xs) @ ys = x # xs @ ys

and the proof of (xs @ ys) @ zs = xs @ ys @ zs by structural induction
on xs. (Note that (@) associates to the right.) The base case is trivial by
definition: ([] @ ys) @ zs = [] @ ys @ zs. The induction step is easy:

12 1 Basics

(x # xs @ ys) @ zs
= x # (xs @ ys) @ zs by definition of (@)

= x # xs @ ys @ zs by IH

Note that IH stands for Induction Hypothesis, in this case (xs @ ys) @ zs
= xs @ ys @ zs.

1.4.1 Computation Induction

Because most of our proofs are about recursive functions, most of them are
by induction, and we say so explicitly. If we do not state explicitly what form
the induction takes, it is by an obvious structural induction. The alternative
and more general induction schema is computation induction where the
induction follows the terminating computation, but from the bottom up. For
example, the terminating recursive definition for gcd :: nat) nat) nat

gcd m n = (if n = 0 then m else gcd n (m mod n))

gives rise to the following induction schema:

If (n 6= 0 �! P n (m mod n)) �! P m n (for all m and n),
then P m n (for all m and n).

In general, let f :: �) � 0 be a terminating function of, for simplicity, one
argument. Proving P(x :: �) by induction on the computation of f means
proving

P r1 ^ : : : ^ P rn �! P e

for every defining equation

f e = : : : f r1 : : : f rn : : :

where f r1, . . . , f rn are all the recursive calls. For simplicity we have ig-
nored the if and case contexts that a recursive call f r i occurs in and that
should be preconditions of the assumption P r i as in the gcd example. If the
defining equations for f overlap, the above proof obligations are stronger than
necessary.

1.5 Running Time

Our approach to reasoning about the running time of a function f is very
simple: we explicitly define a function Tf such that Tf x models the time the
computation of f x takes. Unless stated otherwise, Tf counts the number of
all function calls in the computation of f. It is not intended that Tf yields the
exact running time but only that the running time of f is in O(Tf).

1.5 Running Time 13

Given a function f :: � 1) : : :) �n) � we define a (running) time
function Tf :: � 1) : : :) �n) nat by translating every defining equation
for f into a defining equation for Tf. The translation is defined by two func-
tions: E translates defining equations for f to defining equations for Tf and T
translates expressions that compute some value to expressions that computes
the number of function calls. The unusual notation E [[:]] and T [[:]] emphasizes
that they are not functions in the logic.

E [[f p1 : : : pn = e]] = (Tf p1 : : : pn = T [[e]] + 1)

T [[g e1 : : : ek]] = T [[e1]] + : : : + T [[ek]] + Tg e1 : : : ek (1.1)

This is the general idea. It requires some remarks and clarifications:

• This definition of Tf is an abstraction of a call-by-value semantics. Thus
it is also correct for lazy evaluation but may be a very loose upper bound.

• Definition (1.1) is incomplete: if g is a variable or constructor function
(e.g. Nil or Cons), then there is no defining equation and thus no Tg.
We simply define Tg : : : = 1 if g is a variable, constructor function or
predefined function on bool or numbers. These choices are discussed below.

• Conditionals and case expressions are treated specially:

T [[if b then e1 else e2]]
= T [[b]] + (if b then T [[e1]] else T [[e2]])
T [[case e of p1) e1 j : : : j pk) ek]]
= T [[e]] + (case e of p1) T [[e1]] j : : : j pk) T [[ek]])

• let expressions are also special:

T [[let x = e1 in e2]] = T [[e1]] + (�x : T [[e2]]) e1

Note that T [[e2]] must be evaluated completely before (�x : T [[e2]]) e1
is �-contracted to ensure that T [[x]] = 1 (see above) kicks in instead of
generating multiple copies of T [[e1]].

• For simplicity we restrict ourselves to a first-order language above. Nev-
ertheless we use a few basic higher-order functions like map in the book.
Their running time functions are defined in Appendix B.1.

As an example consider the append function (@) defined above. The defin-
ing equations for Tappend :: 0a list) 0a list) nat are easily derived. The
first equation translates like this:

14 1 Basics

E [[[] @ ys = ys]]
= (Tappend [] ys = T [[ys]] + 1)
= (Tappend [] ys = 2)

The right-hand side of the second equation translates like this:

T [[x # xs @ ys]]
= T [[x]] + T [[xs @ ys]] + TCons x (xs @ ys)
= 1 + (T [[xs]] + T [[ys]] + Tappend xs ys) + 1

= 1 + (1 + 1 + Tappend xs ys) + 1

Thus the two defining equations for Tappend are

Tappend [] ys = 2

Tappend (x # xs) ys = Tappend xs ys + 4

The constants 2 and 4 in the above definition are somewhat arbitrary
because accessing a variable and calling (#) take different amounts of time,
even if we assume they are both constant-time operations. Because we are
only interested in O(Tf) it is justified to reduce all additive constants to 1.
This is what we will call the canonical running time function. Thus the
canonical Tappend is this:

Tappend [] ys = 1

Tappend (x # xs) ys = Tappend xs ys + 1

Unless noted otherwise we always work with canonical running time functions.
This may also involve looking inside if/case when reducing additive constants,
e.g. reducing (if b then 2 + e else 3) + 2 to if b then 1 + e else 1.

Occasionally we will apply one more simplification step: when defining
some Tf, you may drop additive constants when they are added to some term
Tg : : : where T g has already been defined (i.e. g 6= f and f and g are not
mutually recursive). This is because by construction all Tg return positive
results and adding a constant does not change O(Tf).

In the main body of the book we initially show the definition of each
Tf. Once the principles above have been exemplified sufficiently, the time
functions are relegated to Appendix B.

1.5.1 Example: List Reversal

This section exemplifies not just the definition of time functions but also their
analysis. The standard list reversal function rev is defined in Appendix A.
This is the corresponding canonical time function:

1.5 Running Time 15

Trev :: 0a list) nat

Trev [] = 1

Trev (x # xs) = Trev xs + Tappend (rev xs) [x] + 1

The canonical Tappend was shown before.
A simple induction shows Tappend xs ys = jxs j + 1. The precise formula

for Trev is less immediately obvious (exercise!) but an upper bound is easy to
guess and verify by induction:

Trev xs � (jxs j + 1)2

We will frequently prove upper bounds only.
Of course one can also reverse a list in linear time:

itrev :: 0a list) 0a list) 0a list

itrev [] ys = ys
itrev (x # xs) ys = itrev xs (x # ys)

Titrev :: 0a list) 0a list) nat

Titrev [] _ = 1

Titrev (x # xs) ys = Titrev xs (x # ys) + 1

Function itrev has linear running time: Titrev xs ys = jxs j + 1. A simple
induction yields itrev xs ys = rev xs @ ys. Thus itrev implements rev :
rev xs = itrev xs [].

1.5.2 Discussion

Analysing the running time of any program, let alone a functional one, is
tricky unless you have two formally specified entities: a machine model that
includes a notion of running time and a translation from programs to ma-
chines. For imperative programs the standard model is the Random Access
Machine (RAM) where each instruction takes one time unit. For functional
programs a standard measure is the number of function calls. We adopt this
measure and equate it with time although a more honest name would be
computation steps.

A full proof that the execution time of our functional programs is in O(Tf)

on some actual soft- and hardware is a major undertaking: one would need
to formalize the full stack of compiler, runtime system and hardware. We

16 1 Basics

do not offer such a proof. Thus our formalization of “time” should be seen as
conditional: given a stack that satisfies our basic assumptions in the definition
of E and T , our analyses are correct for that stack. We argue that these
assumptions are not unreasonable (on a RAM) provided we accept that both
the address space and numbers have a fixed size and cannot grow arbitrarily.
Of course this means that actual program execution may abort if the resources
are exhausted.

Our basic assumption is that function calls take constant time. This is
reasonable because we just need to allocate (and later deallocate) a new stack
frame of constant size because all parameters are references or numbers and
thus of fixed size. We also assumed that variable access takes constant time.
This is a standard RAM assumption. Assuming that constructor functions
take constant time is reasonable because the memory manager could simply
employ a single reference to the first free memory cell and increment that with
each constructor function call. How to account for garbage collection is less
clear. In the worst case we have to assume that garbage collection is switched
off, which simply exhausts memory more quickly. Finally we assume that
operations on bool and numbers take constant time. The former is obvious,
the latter follows from our assumption that we have fixed-size numbers.

In the end, we are less interested in a specific model of time and more in
the principle that time (and other resources) can be analyzed just as formally
as functional correctness once the ground rules (e.g. T) have been established.

1.5.3 Asymptotic Notation

The above approach to running time analysis is nicely concrete and avoids the
more sophisticated machinery of asymptotic notation, O(:) and friends. Thus
we have intentionally lowered the entry barrier to the book for readers who
want to follow the Isabelle formalization: we require no familiarity with Isa-
belle’s real analysis library and in particular with the existing formalization of
and automation for asymptotic notation [17]. Of course this comes at a price:
one has to come up with and reason about somewhat arbitrary constants in
the analysis of individual functions. Moreover we rarely appeal to the “master
theorem" (although Eberl [17] provides a generalized version) but prove so-
lutions to recurrence equations correct by induction. Again, this is merely to
reduce the required mathematical basis and to show that it can be done. In
informal explanations, typically when considering inessential variations, we
do use standard mathematical notation and write, for example, O(n lgn).

Part I

Sorting and Selection

2

Sorting

In this chapter we define and verify the following sorting functions: insertion
sort, quicksort, and one top-down and two bottom-up merge sorts. We also
analyze their running times, except for quicksort.

Sorting involves an ordering. In this book we assume such an ordering
to be provided by comparison operators � and < defined on the underlying
type.

Sortedness of lists is defined as follows:

sorted :: (0a ::linorder) list) bool

sorted [] = True
sorted (x # ys) = ((8 y2set ys : x � y) ^ sorted ys)

That is, every element is � than all elements to the right of it: the list is
sorted in increasing order. But what does 0a ::linorder mean?

The type variable 0a is annotated with linorder, which means that sorted
is only applicable if a binary predicate (�) :: 0a) 0a) bool is defined and
(�) is a linear order, i.e. the following properties are satisfied:

reflexivity: x � x
transitivity: x � y ^ y � z �! x � z
antisymmetry: a � b ^ b � a �! a = b
linearity/totality: x � y _ y � x

Moreover, the binary predicate (<) must satisfy

x < y ! x � y ^ x 6= y.

Note that linorder is a specific predefined example of a type class [25].
We will not explain type classes any further because we do not require the
general concept. In fact, we will mostly not even show the linorder annotation

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Sorting.html

20 2 Sorting

in types: you can assume that if you see � or < on a generic type 0a in this
book, 0a is implicitly annotated with linorder. Note further that (�) on the
numeric types nat, int and real is a linear order.

2.1 Specification of Sorting Functions

A sorting function sort :: 0a list) 0a list (where, as usual, 0a ::linorder)
must obviously satisfy the following property:

sorted (sort xs)

However, this is not enough — otherwise, wrong_sort xs = [] would be a
correct sorting function. The set of elements in the output must be the same
as in the input, and each element must occur the same number of times. This
is most readily captured with the notion of a multiset (see Section 1.2.3). The
second property that a sorting function sort must satisfy is

mset (sort xs) = mset xs

where function mset converts a list into its corresponding multiset.

2.2 Insertion Sort

Insertion sort is well-known for its intellectual simplicity and computational
inefficiency. Its simplicity makes it an ideal starting point for this book. Below,
it is implemented by the function isort with the help of the auxiliary function
insort that inserts a single element into an already sorted list.

insort :: 0a) 0a list) 0a list

insort x [] = [x]
insort x (y # ys) = (if x � y then x # y # ys else y # insort x ys)

isort :: 0a list) 0a list

isort [] = []

isort (x # xs) = insort x (isort xs)

2.2.1 Functional Correctness

We start by proving the preservation of the multiset of elements:

2.2 Insertion Sort 21

mset (insort x xs) = {{x}} + mset xs (2.1)

mset (isort xs) = mset xs (2.2)

Both properties are proved by induction; the proof of (2.2) requires (2.1).
Now we turn to sortedness. Because the definition of sorted involves set,

it is frequently helpful to prove multiset preservation first (as we have done
above) because that yields preservation of the set of elements. That is, from
(2.1) we obtain:

set (insort x xs) = fxg [set xs (2.3)

Two inductions prove

sorted (insort a xs) = sorted xs (2.4)

sorted (isort xs) (2.5)

where the proof of (2.4) uses (2.3) and the proof of (2.5) uses (2.4).

2.2.2 Running Time Analysis

These are the canonical running time functions (according to Section 1.5):

Tinsort :: 0a) 0a list) nat

Tinsort _ [] = 1

Tinsort x (y # ys) = (if x � y then 0 else Tinsort x ys) + 1

Tisort :: 0a list) nat

Tisort [] = 1

Tisort (x # xs) = Tisort xs + Tinsort x (isort xs) + 1

A dismal quadratic upper bound for the running time of insertion sort is
proved readily:

Lemma 2.1. Tisort xs � (jxs j + 1)2

Proof. The following properties are proved by induction on xs :

Tinsort x xs � jxs j + 1 (2.6)

jinsort x xs j = jxs j + 1 (2.7)

jisort xs j = jxs j (2.8)

The proof of (2.8) needs (2.7). The proof of Tisort xs � (jxs j + 1)2 is also by
induction on xs. The base case is trivial. The induction step is easy:

22 2 Sorting

Tisort (x # xs) = Tisort xs + Tinsort x (isort xs) + 1

� (jxs j + 1)2 + Tinsort x (isort xs) + 1 by IH
� (jxs j + 1)2 + jxs j + 1 + 1 using (2.6) and (2.8)
� (jx # xs j + 1)2 ut

Exercise 2.2 asks you to show that isort actually has quadratic running time
on all lists [n ; n�1; : : : ; 0].

2.2.3 Exercises

Exercise 2.1. Show that any sorting function has the same input/output
behaviour as insertion sort:

(8 xs : mset (f xs) = mset xs) ^ (8 xs : sorted (f xs)) �!
f xs = isort xs

Exercise 2.2. Show that Tisort achieves its optimal value of 2 � n + 1 for
sorted lists, and its worst-case value of (n + 1) � (n + 2) div 2 for the list
rev [0::<n].

2.3 Quicksort

Quicksort is a divide-and-conquer algorithm that sorts a list as follows: pick a
pivot element from the list; partition the remaining list into those elements
that are smaller and those that are greater than the pivot (equal elements can
go into either sublist); sort these sublists recursively and append the results. A
particularly simple version of this approach, where the first element is chosen
as the pivot, looks like this:

quicksort :: 0a list) 0a list

quicksort [] = []

quicksort (x # xs)
= quicksort (filter (�y : y < x) xs) @

[x] @ quicksort (filter (�y : y � x) xs)

2.3.1 Functional Correctness

Preservation of the multiset of elements

mset (quicksort xs) = mset xs (2.9)

2.3 Quicksort 23

is proved by computation induction using these lemmas:

mset (filter P xs) = filter_mset P (mset xs)

(8 x : P x = (: Q x)) �! filter_mset P M + filter_mset Q M = M

A second computation induction proves sortedness

sorted (quicksort xs)

using the lemmas

sorted (xs @ ys)
= (sorted xs ^ sorted ys ^ (8 x2set xs : 8 y2set ys : x � y))

set (quicksort xs) = set xs

where the latter one is an easy consequence of (2.9).
We do not analyze the running time of quicksort. It is well known that

in the worst case it is quadratic (exercise!) but that the average-case running
time (in a certain sense) is O(n lgn). If the pivot is chosen randomly instead of
always choosing the first element, the expected running time is also O(n lgn).
The necessary probabilistic analysis is beyond the scope of this text but can
be found elsewhere [16, 18].

2.3.2 Exercises

Exercise 2.3. Function quicksort appends the lists returned from the recur-
sive calls. This is expensive because the running time of (@) is linear in the
length of its first argument. Define a function quicksort2 :: 0a list) 0a list
) 0a list that avoids (@) but accumulates the result in its second parameter
via (#) only. Prove quicksort2 xs ys = quicksort xs @ ys.

Exercise 2.4. There is one obvious optimisation to the version of quicksort
that we studied before: instead of partitioning the list into those elements
that are smaller than the pivot and those that are at least as big as the pivot,
we can use three-way partitioning:

partition3 :: 0a) 0a list) 0a list � 0a list � 0a list

partition3 x xs
= (filter (�y : y < x) xs ; filter (�y : y = x) xs ;

filter (�y : x < y) xs)

quicksort3 :: 0a list) 0a list

quicksort3 [] = []

24 2 Sorting

quicksort3 (x # xs)
= (let (ls ; es ; gs) = partition3 x xs

in quicksort3 ls @ x # es @ quicksort3 gs)

Prove that this version of quicksort also produces the correct results.

Exercise 2.5. In this exercise, we will examine the worst-case behaviour of
Quicksort, which is e.g. achieved if the input list is already sorted. Consider
the time function for Quicksort:

Tquicksort :: 0a list) nat

Tquicksort [] = 1

Tquicksort (x # xs) = Tquicksort (filter (�y : y < x) xs) +

Tquicksort (filter (�y : y � x) xs) +

2 � Tfilter (�_: 1) xs + 1

1. Show that Quicksort takes quadratic time on sorted lists by proving

sorted xs �! Tquicksort xs = a � jxs j2 + b � jxs j + c

for suitable values a, b, c.
2. Show that this is the worst-case running time by proving

Tquicksort xs � a � jxs j2 + b � jxs j + c

for the values of a, b, c you determined in the previous step.

2.4 Top-Down Merge Sort

Merge sort is another prime example of a divide-and-conquer algorithm, and
one whose running time is guaranteed to be O(n lgn). We will consider three
variants and start with the simplest one: split the list into two halves, sort
the halves separately and merge the results.

merge :: 0a list) 0a list) 0a list

merge [] ys = ys

2.4 Top-Down Merge Sort 25

merge xs [] = xs
merge (x # xs) (y # ys)
= (if x � y then x # merge xs (y # ys)

else y # merge (x # xs) ys)

msort :: 0a list) 0a list

msort xs
= (let n = jxs j

in if n � 1 then xs
else merge (msort (take (n div 2) xs))

(msort (drop (n div 2) xs)))

2.4.1 Functional Correctness

We start off with multisets and sets of elements:

mset (merge xs ys) = mset xs + mset ys (2.10)

set (merge xs ys) = set xs [set ys (2.11)

Proposition (2.10) is proved by induction on the computation of merge and
(2.11) is an easy consequence.

Lemma 2.2. mset (msort xs) = mset xs

Proof. The proof is by induction on the computation of msort. Let n = jxs j.
The base case (n � 1) is trivial. Now assume n > 1 and let ys = take (n
div 2) xs and zs = drop (n div 2) xs.

mset (msort xs) = mset (msort ys) + mset (msort zs) by (2.10)
= mset ys + mset zs by IH
= mset (ys @ zs)
= mset xs ut
Now we turn to sortedness. An induction on the computation of merge,

using (2.11), yields

sorted (merge xs ys) = (sorted xs ^ sorted ys) (2.12)

Lemma 2.3. sorted (msort xs)

The proof is an easy induction on the computation of msort. The base case
(n � 1) follows because every list of length � 1 is sorted. The induction step
follows with the help of (2.12).

26 2 Sorting

2.4.2 Running Time Analysis

To simplify the analysis, and in line with the literature, we only count the
number of comparisons:

Cmerge :: 0a list) 0a list) nat

Cmerge [] _ = 0

Cmerge _ [] = 0

Cmerge (x # xs) (y # ys)
= 1 + (if x � y then Cmerge xs (y # ys) else Cmerge (x # xs) ys)

Cmsort :: 0a list) nat

Cmsort xs
= (let n = jxs j;

ys = take (n div 2) xs ;
zs = drop (n div 2) xs

in if n � 1 then 0

else Cmsort ys + Cmsort zs + Cmerge (msort ys) (msort zs))

By computation inductions we obtain:

jmerge xs ys j = jxs j + jys j (2.13)

jmsort xs j = jxs j (2.14)

Cmerge xs ys � jxs j + jys j (2.15)

where the proof of (2.14) uses (2.13).
To simplify technicalities, we prove the n � lg n bound on the number

of comparisons in msort only for n = 2k, in which case the bound becomes
k � 2k.
Lemma 2.4. jxs j = 2k �! Cmsort xs � k � 2k

Proof. The proof is by induction on k. The base case is trivial and we con-
centrate on the step. Let n = jxs j, ys = take (n div 2) xs and zs = drop
(n div 2) xs. The case n � 1 is trivial. Now assume n > 1.

Cmsort xs
= Cmsort ys + Cmsort zs + Cmerge (msort ys) (msort zs)
� Cmsort ys + Cmsort zs + jys j + jzs j using (2.15) and (2.14)
� k � 2k + k � 2k + jys j + jzs j by IH
= k � 2k + k � 2k + jxs j
= (k + 1) � 2k + 1 by assumption jxs j = 2k + 1 ut

2.5 Bottom-Up Merge Sort 27

Exercise 2.6. The definition of msort is inefficient in that it calls length,
take and drop for each list. Instead we can split the list into two halves by
traversing it only once and putting its elements alternately on two piles, for
example halve [2; 3; 4] ([0]; [1]) = ([4; 2; 0]; [3; 1]). Define halve and msort2

msort2 [] = []

msort2 [x] = [x]

msort2 xs
= (let (ys1; ys2) = halve xs ([]; []) in merge (msort2 ys1) (msort2 ys2))

and prove mset (msort2 xs) = mset xs and sorted (msort2 xs). (Hint for
Isabelle users: The definition of msort2 is tricky because its termination relies
on suitable properties of halve.)

2.5 Bottom-Up Merge Sort

Bottom-up merge sort starts by turning the input [x 1; : : : ; xn] into the list
[[x 1]; : : : ; [xn]]. Then it passes over this list of lists repeatedly, merging pairs
of adjacent lists on every pass until at most one list is left.

merge_adj :: 0a list list) 0a list list

merge_adj [] = []

merge_adj [xs] = [xs]
merge_adj (xs # ys # zss) = merge xs ys # merge_adj zss

merge_all :: 0a list list) 0a list

merge_all [] = []

merge_all [xs] = xs
merge_all xss = merge_all (merge_adj xss)

msort_bu :: 0a list) 0a list

msort_bu xs = merge_all (map (�x : [x]) xs)

Termination of merge_all relies on the fact that merge_adj halves the length
of the list (rounding up). Computation induction proves

jmerge_adj xs j = (jxs j + 1) div 2 (2.16)

2.5.1 Functional Correctness

We introduce the abbreviation mset_mset :: 0a list list) 0a multiset :

28 2 Sorting

mset_mset xss � P
#
(image_mset mset (mset xss))

These are the key properties of the functions involved:

mset_mset (merge_adj xss) = mset_mset xss

mset (merge_all xss) = mset_mset xss (2.17)

mset (msort_bu xs) = mset xs

(8 xs2set xss : sorted xs) �! (8 xs2set (merge_adj xss): sorted xs)

(8 xs2set xss : sorted xs) �! sorted (merge_all xss) (2.18)

sorted (msort_bu xs)

The third and the last property prove functional correctness of msort_bu. The
proof of each proposition may use the preceding proposition and the propo-
sitions (2.10) and (2.12). The propositions about merge_adj and merge_all
are proved by computation inductions.

2.5.2 Running Time Analysis

Again, we count only comparisons:

Cmerge_adj ::
0a list list) nat

Cmerge_adj [] = 0

Cmerge_adj [_] = 0

Cmerge_adj (xs # ys # zss) = Cmerge xs ys + Cmerge_adj zss

Cmerge_all ::
0a list list) nat

Cmerge_all [] = 0

Cmerge_all [xs] = 0

Cmerge_all xss = Cmerge_adj xss + Cmerge_all (merge_adj xss)

Cmsort_bu :: 0a list) nat

Cmsort_bu xs = Cmerge_all (map (�x : [x]) xs)

By simple computation inductions we obtain:

even jxss j ^ (8 xs2set xss : jxs j = m) �!
(8 xs2set (merge_adj xss): jxs j = 2 � m) (2.19)

(8 xs2set xss : jxs j = m) �! Cmerge_adj xss � m � jxss j (2.20)

using (2.13) for (2.19) and (2.15) for (2.20).

2.6 Natural Merge Sort 29

Lemma 2.5. (8 xs2set xss : jxs j = m) ^ jxss j = 2k �!
Cmerge_all xss � m � k � 2k

Proof by induction on the computation of merge_all. We concentrate on the
nontrivial recursive case arising from the third equation. We assume jxss j > 1,
8 xs2set xss : jxs j = m and jxss j = 2k. Clearly k � 1 and thus even jxss j.
Thus (2.19) implies 8 xs2set (merge_adj xss): jxs j = 2 � m. Also note

jmerge_adj xss j
= (jxss j + 1) div 2 using (2.16)
= 2k � 1 using jxss j = 2k and k � 1 by arithmetic

Let yss = merge_adj xss. We can now prove the lemma:

Cmerge_all xss = Cmerge_adj xss + Cmerge_all yss
� m � 2k + Cmerge_all yss using jxss j = 2k and (2.20)
� m � 2k + 2 � m � (k � 1) � 2k � 1

by IH using 8 xs2set yss : jxs j = 2 � m and jyss j = 2k � 1

= m � k � 2k ut
Setting m = 1 we obtain the same upper bound as for top-down merge sort
in Lemma 2.4:

Corollary 2.6. jxs j = 2k �! Cmsort_bu xs � k � 2k

2.6 Natural Merge Sort

A disadvantage of all the sorting functions we have seen so far (except insertion
sort) is that even in the best case they do not improve upon the n � lg n bound.
For example, given the sorted input [1; 2; 3; 4; 5], msort_bu will, as a first
step, create [[1]; [2]; [3]; [4]; [5]] and then merge this list of lists recursively.

A slight variation of bottom-up merge sort, sometimes referred to as “nat-
ural merge sort,” first partitions the input into its constituent ascending and
descending subsequences (collectively referred to as runs) and only then starts
merging. In the above example we would get merge_all [[1; 2; 3; 4; 5]], which
returns immediately with the result [1; 2; 3; 4; 5]. Assuming that obtaining
runs is of linear complexity, this yields a best-case performance that is linear
in the number of list elements.

Function runs computes the initial list of lists; it is defined mutually
recursively with asc and desc, which gather ascending and descending runs
in accumulating parameters:

https://devel.isa-afp.org/browser_info/current/AFP/Efficient-Mergesort/Natural_Mergesort.html
https://devel.isa-afp.org/browser_info/current/AFP/Efficient-Mergesort/Natural_Mergesort.html

30 2 Sorting

runs :: 0a list) 0a list list

runs (a # b # xs)
= (if b < a then desc b [a] xs else asc b ((#) a) xs)
runs [x] = [[x]]
runs [] = []

asc :: 0a) (0a list) 0a list)) 0a list) 0a list list

asc a as (b # bs)
= (if : b < a then asc b (as � (#) a) bs else as [a] # runs (b # bs))
asc a as [] = [as [a]]

desc :: 0a) 0a list) 0a list) 0a list list

desc a as (b # bs)
= (if b < a then desc b (a # as) bs else (a # as) # runs (b # bs))
desc a as [] = [a # as]

Function desc needs to reverse the descending run it collects. Therefore a
natural choice for the type of its accumulator as is list, since recursively
prepending elements (using (#)) ultimately yields a reversed list.

Function asc collects an ascending run and is slightly more complicated
than desc. If we used lists, we could accumulate the elements similarly to
desc but using as @ [a] instead of a # as. This would take quadratic time
in the number of appended elements. Therefore the “standard” solution is to
accumulate elements using (#) and to reverse the accumulator in linear time
(as shown in Section 1.5.1) at the end. However, another interesting option
(that yields better performance for some functional languages, like Haskell)
is to use difference lists. This is the option we chose for asc.

In the functional programming world, difference lists are a well-known
trick to append lists in constant time by representing lists as functions of
type 0a list) 0a list. For difference lists, we have the following correspon-
dences: empty list [] � �x : x , singleton list [x] � (#) x , and list append
xs @ ys � xs � ys (taking constant time). Moreover, transforming a differ-
ence list xs into a normal list is as easy as xs [] (taking linear time).

Note that, due to the mutually recursive definitions of runs, asc, and
desc, whenever we prove a property of runs, we simultaneously have to prove
suitable properties of asc and desc using mutual induction.

Natural merge sort is the composition of merge_all and runs :

2.6 Natural Merge Sort 31

nmsort :: 0a list) 0a list

nmsort xs = merge_all (runs xs)

2.6.1 Functional Correctness

We have

(8 xs ys : f (xs @ ys) = f xs @ ys) �!
mset_mset (asc x f ys) = {{x}} + mset (f []) + mset ys (2.21)

mset_mset (desc x xs ys) = {{x}} + mset xs + mset ys (2.22)

mset_mset (runs xs) = mset xs (2.23)

mset (nmsort xs) = mset xs (2.24)

where (2.23), (2.21), and (2.22) are proved simultaneously. The assumption
of (2.21) on f ensures that f is a difference list. We use (2.23) together with
(2.17) in order to show (2.24). Moreover, we have

8 x2set (runs xs): sorted x (2.25)

sorted (nmsort xs) (2.26)

where we use (2.25) together with (2.18) to obtain (2.26).

2.6.2 Running Time Analysis

Once more, we only count comparisons:

Cruns :: 0a list) nat

Cruns (a # b # xs) = 1 + (if b < a then Cdesc b xs else Casc b xs)
Cruns [] = 0

Cruns [_] = 0

Casc :: 0a) 0a list) nat

Casc a (b # bs) = 1 + (if : b < a then Casc b bs else Cruns (b # bs))
Casc _ [] = 0

Cdesc :: 0a) 0a list) nat

Cdesc a (b # bs) = 1 + (if b < a then Cdesc b bs else Cruns (b # bs))
Cdesc _ [] = 0

https://devel.isa-afp.org/browser_info/current/AFP/Efficient-Mergesort/Natural_Mergesort.html

32 2 Sorting

Cnmsort :: 0a list) nat

Cnmsort xs = Cruns xs + Cmerge_all (runs xs)

Again note the mutually recursive definitions of Cruns, Casc, and Cdesc.
Hence the remark on proofs about runs also applies to proofs about Cruns.

Before talking about Cnmsort, we need a variant of Lemma 2.5 that also
works for lists whose lengths are not powers of two (since the result of runs
will usually not satisfy this property).

To this end, we will need the following two results, which we prove by two
simple computation inductions using (2.15) and (2.13):

Cmerge_adj xss � jconcat xss j (2.27)

jconcat (merge_adj xss)j = jconcat xss j (2.28)

Lemma 2.7. Cmerge_all xss � jconcat xss j � dlg jxss je
Proof by induction on the computation of Cmerge_all. We concentrate on the
nontrivial recursive case arising from the third equation. It follows that xss
is of the form xs # ys # zss. Further note that for all n :: nat :

2 � n �! dlg ne = dlg ((n � 1) div 2 + 1)e + 1 (2.29)

Now, let m = jconcat xss j. Then we have

Cmerge_all xss
= Cmerge_adj xss + Cmerge_all (merge_adj xss)
� m + Cmerge_all (merge_adj xss) using (2.27)
� m + jconcat (merge_adj xss)j � dlg jmerge_adj xss je by IH
= m + m � dlg jmerge_adj xss je by (2.28)
= m + m � dlg ((jxss j + 1) div 2)e by (2.16)
= m + m � dlg ((jzss j + 1) div 2 + 1)e
= m � (dlg ((jzss j + 1) div 2 + 1)e + 1)

= m � dlg (jzss j + 2)e by (2.29)
= m � dlg jxss je ut
Two simple computation inductions, each performed simultaneously for

the corresponding mutually recursive definitions, yield:

(8 xs ys : f (xs @ ys) = f xs @ ys) �! jasc a f ys j � 1 + jys j
jdesc a xs ys j � 1 + jys j
jruns xs j � jxs j (2.30)

Casc a ys � jys j
Cdesc a ys � jys j
Cruns xs � jxs j � 1 (2.31)

2.7 Stability 33

At this point we obtain an upper bound on the number of comparisons
required by Cnmsort.

Lemma 2.8. jxs j = n �! Cnmsort xs � n + n � dlg ne

Proof. Note that

Cmerge_all (runs xs) � n � dlg ne (?)

as shown by the derivation:

Cmerge_all (runs xs)
� n � dlg jruns xs je by Lemma 2.7 with xss = runs xs
� n � dlg ne by (2.30)

We conclude the proof by:

Cnmsort xs = Cruns xs + Cmerge_all (runs xs)
� n + n � dlg ne using (2.31) and (?) ut

2.7 Stability

A sorting function is called stable if the order of equal elements is preserved.
However, this only makes a difference if elements are not identified with their
keys, as we have done so far. Let us assume instead that sorting is parameter-
ized with a key function f :: 0a) 0k that maps an element to its key and that
the keys 0k are linearly ordered, not the elements. This is the specification of
a sorting function sort_key :

mset (sort_key f xs) = mset xs

sorted (map f (sort_key f xs))

Assuming (for simplicity) we are sorting pairs of keys and some attached
information, stability means that sorting [(2; x); (1; z); (1; y)] yields [(1;

z); (1; y); (2; x)] and not [(1; y); (1; z); (2; x)]. That is, if we extract all
elements with the same key after sorting xs, they should be in the same order
as in xs :

filter (�y : f y = k) (sort_key f xs) = filter (�y : f y = k) xs

We will now define insertion sort adapted to keys and verify its correctness
and stability.

34 2 Sorting

insort_key :: (0b) 0a)) 0b) 0b list) 0b list

insort_key _ x [] = [x]
insort_key f x (y # ys)
= (if f x � f y then x # y # ys else y # insort_key f x ys)

isort_key :: (0a) 0k)) 0a list) 0a list

isort_key _ [] = []

isort_key f (x # xs) = insort_key f x (isort_key f xs)

The proofs of the functional correctness properties

mset (isort_key f xs) = mset xs

sorted (map f (isort_key f xs)) (2.32)

are completely analogous to their counterparts for plain isort.
The proof of stability uses three auxiliary properties:

(8 x2set xs : f a � f x) �! insort_key f a xs = a # xs (2.33)

: P x �! filter P (insort_key f x xs) = filter P xs (2.34)

sorted (map f xs) ^ P x �!
filter P (insort_key f x xs) = insort_key f x (filter P xs) (2.35)

The first one is proved by a case analysis on xs. The other two are proved by
induction on xs, using (2.33) in the proof of (2.35).

Lemma 2.9 (Stability of isort_key).
filter (�y : f y = k) (isort_key f xs) = filter (�y : f y = k) xs

Proof. The proof is by induction on xs. The base case is trivial. In the induc-
tion step we consider the list a # xs and perform a case analysis. If f a 6= k
the claim follows by IH using (2.34). Now assume f a = k :

filter (�y : f y = k) (isort_key f (a # xs))
= filter (�y : f y = k) (insort_key f a (isort_key f xs))
= insort_key f a (filter (�y : f y = k) (isort_key f xs))

using f a = k, (2.35), (2.32)
= insort_key f a (filter (�y : f y = k) xs) by IH
= a # filter (�y : f y = k) xs using f a = k and (2.33)
= filter (�y : f y = k) (a # xs) using f a = k ut
As exercises we recommend to adapt some of the other sorting algorithms

above to sorting with keys and to prove their correctness and stability.

3

Selection

A topic that is somewhat related to that of sorting is selection : given a list xs
of length n with some linear ordering defined on it and a natural number k <

n, return the k -th smallest number in the list. If xs is sorted, this is exactly
the k -th element of the list.

The defining properties of the selection operation are as follows:

k < jxs j �! j{{y 2# mset xs j y < select k xs}}j � k
^ j{{y 2# mset xs j y > select k xs}}j < jxs j � k (3.1)

These properties uniquely define the selection property, as shown by the fol-
lowing theorem:

Theorem 3.1 (Uniqueness of the selection operation).
If k < jxs j and

j{{z 2# mset xs j z < x}}j � k j{{z 2# mset xs j z > x}}j < jxs j � k
j{{z 2# mset xs j z < y}}j � k j{{z 2# mset xs j z > y}}j < jxs j � k

then x = y .

Proof. Suppose x 6= y and then w.l.o.g. x < y. This implies:

{{z 2# mset xs j z � x}} �
#

{{z 2# mset xs j z < y}} (3.2)

From this we can prove the contradiction jxs j < jxs j:
jxs j = j{{z 2# mset xs j z � x}}j + j{{z 2# mset xs j x < z}}j
� j{{z 2# mset xs j z < y}}j + j{{z 2# mset xs j x < z}}j using (3.2)
< k + (jxs j � k) using (3.1)
= jxs j

ut
An equivalent, more concrete definition is the following:

select :: nat) (0a ::linorder) list) 0a

select k xs = sort xs ! k (3.3)

https://devel.isa-afp.org/browser_info/current/AFP/Median_Of_Medians_Selection/Median_Of_Medians_Selection.html

36 3 Selection

Theorem 3.2. Our definition of select satisfies the conditions (3.1).

Proof. If ys is a sorted list, the following can be proved by a straightforward
induction on ys :

{{x 2# mset ys j x < ys ! k}} �
#
mset (take k ys)

{{x 2# mset ys j x > ys ! k}} �
#
mset (drop (k + 1) ys)

Taking the size of these multisets on both sides, we obtain:

j{{x 2# mset ys j x < ys ! k}}j � k
j{{x 2# mset ys j x > ys ! k}}j < jys j � k

By setting ys := sort ys here, we have

k � j{{x 2# mset (sort xs) j x < sort xs ! k}}j
= j{{x 2# mset xs j x < sort xs ! k}}j using mset (sort xs) = mset xs
= j{{x 2# mset xs j x < select k xs}}j using (3.3)

and analogously for the elements greater than select k xs. ut

We will frequently need two more important lemmas about sort and select,
namely that they are invariant under permutation of the input list:

mset xs = mset ys �! sort xs = sort ys (3.4)

mset xs = mset ys �! select k xs = select k ys (3.5)

Equation (3.4) follows directly from the uniqueness of the sort operation, and
(3.5) then follows from (3.4) and our definition of select.

The definition using sort xs ! k already gives us a straightforward
O(n lgn) algorithm for the selection operation: sort the list with one of our
O(n lgn) sorting algorithms and then return the k -th element of the result-
ing sorted list. It is also fairly easy to come up with an algorithm that has
running time O(kn), i.e. that runs in linear-time in n for any fixed k (see
Exercise 3.3).

In the remainder of this chapter, we will look at a selection algorithm due
to Blum et al. [10] that achieves O(n) running time unconditionally (i.e. for
any k < n). Since a selection algorithm must, in general, inspect each element
at least once (see Exercise 3.4), this running time is asymptotically optimal.

3.0.1 Exercises

Exercise 3.1. A simple special case of selection is select 0 xs, i.e. the mini-
mum. Implement a linear-time function select0 such that

xs 6= [] �! select0 xs = select 0 xs

3 Selection 37

and prove this. This function should be tail-recursive and traverse the list ex-
actly once. You need not prove the linear running time (it should be obvious).

Exercise 3.2. How can your select0 algorithm be modified to obtain an anal-
ogous algorithm select1 such that

1 < jxs j �! select1 xs = select 1 xs

Do not try to prove the correctness yet; it gets somewhat tedious and you will
be able to prove it more easily after the next exercise.

Exercise 3.3.

1. Based on the previous two exercises, implement and prove correct an
algorithm select_fixed that fulfils

k < jxs j �! select_fixed k xs = select k xs
The algorithm must be tail-recursive with running time O(kn) and tra-
verse the list exactly once.
Hint: one approach is to first define a function take_sort that computes
take m (sort xs) in time O(mn).

2. Prove your select1 from the previous exercise correct by showing that it
is equivalent to select_fixed 1.

3. Define a suitable time function for your select_fixed. Prove that this time
function is O(kn), i.e. that

Tselect_fixed k xs � C1 � k � jxs j + C2 � jxs j + C3 � k + C4

for all k < jxs j for some constants C 1 to C 4.
If you have trouble finding the concrete values for these constants, try
proving the result with symbolic constants first and observe what condi-
tions need to be fulfilled in order to make the induction step go through.

Exercise 3.4. Show that if xs is a list of integers with no repeated elements,
an algorithm computing the result of select k xs must examine every single
element, i.e. for any index i < jxs j, the i -th element can be replaced by some
other number such that the result changes. Formally:

k < jxs j ^ i < jxs j ^ distinct xs �!
(9 z : distinct (xs [i := z]) ^ select k (xs [i := z]) 6= select k xs)

Here, the notation xs [i := z] denotes the list xs where the i -th element has
been replaced with z (the first list element, as always, having index 0).

Hint: a lemma you might find useful is that �k : select k xs is injective if
xs has no repeated elements.

38 3 Selection

3.1 A Divide-and-Conquer Approach

As a first step in our attempt to derive an efficient algorithm for selection,
recall what we did with the function partition3 in the threeway quicksort
algorithm in Exercise 2.4: we picked some pivot x from xs and partitioned
the input list xs into the sublists ls, es, and gs that were smaller, equal, and
greater than x, respectively.

If we do the same for select k xs, there are three possible cases:

• If k < jls j, the element we are looking for is located in ls. To be more
precise, it is the k -th smallest element of ls, i.e. select k ls.

• If k < jls j + jes j, the element we are looking for is located in es and must
therefore be x itself.

• Otherwise, the element we are looking for must be located in gs. More
precisely, it is the k 0-th smallest element of gs where k 0 = k � jls j � jes j.

This gives us a straightforward recursive divide-and-conquer algorithm for
selection. To prove this correct, we first prove the following lemma about
select :

k < jys j + jzs j ^ (8 y2set ys : 8 z2set zs : y � z) �!
select k (ys @ zs)
= (if k < jys j then select k ys else select (k � jys j) zs)

(3.6)

Proof. The assumptions imply that sort xs @ sort ys is sorted, so that due
to the uniqueness of the sort operation, we have:

sort (xs @ ys) = sort xs @ sort ys (3.7)

Then:

select k (xs @ ys)
= sort (xs @ ys) ! k using (3.3)
= (sort xs @ sort ys) ! k using (3.7)
= if k < jxs j then sort xs ! k else sort ys ! (k � jxs j)
= if k < jxs j then select k xs else select (k � jxs j) ys using (3.3)

ut
Now the recurrence outlined before is a direct consequence:

Theorem 3.3 (A recurrence for select).

k < jxs j �!
select k xs
= (let (ls ; es ; gs) = partition3 x xs

in if k < jls j then select k ls
else if k < jls j + jes j then x else select (k � jls j � jes j) gs)

3.1 A Divide-and-Conquer Approach 39

Proof. We clearly have mset xs = mset ls + mset es + mset gs and jxs j
= jls j + jes j + jgs j. Then:

select k xs
= select k (ls @ es @ gs) using (3.5)
= if k < jls j then select k ls

else if k � jls j < jes j then select (k � jls j) es
else select (k � jls j � jes j) gs

using (3.6)

Clearly, k � jls j < jes j ! k < jls j + jes j and select (k � jls j) es = x
since select (k � jls j) es 2 set es and set es = fxg by construction. ut

Note that this holds for any pivot x. Indeed, x need not even be in the
list itself. Therefore, the algorithm is (partially) correct no matter what pivot
we choose. However, the number of recursive calls (and thereby the running
time) depends strongly on the pivot choice:

• If we always choose a pivot that is smaller than any element in the list,
the algorithm does not terminate at all.

• If we choose the smallest element in the list as a pivot every time, only
one element is removed from the list in every recursion step so that we get
n recursive calls in total. Since we do a linear amount of work in every
step, this leads to a running time of �(n2).

• If we choose pivots from the list at random, the worst-case running time is
again �(n2), but the expected running time can be shown to be �(n), sim-
ilarly to the situation in Quicksort. Indeed, it can also be shown that it is
very unlikely that the running time is significantly “worse than linear” [39,
Section 2.5].

• If we choose a pivot that cuts the list in half every time, we get roughly
lgn recursive steps and, by the Master Theorem, a running time of �(n)

(assuming we can find such a pivot in linear time).

Clearly, the last case is the most desirable one. The element that cuts the list
in half is called the median (a term widely used in statistics, albeit with a
slightly different meaning). For lists of odd length, there is a unique element
that achieves this, whereas for lists of even length there are two such elements
(e.g. for the list [1;2;3;4], both 2 and 3 work). For our purposes, we always
use the smaller one and define:

median :: 0a list) 0a

median xs = select ((jxs j � 1) div 2) xs

Unfortunately, computing the median of a list is no easier than selection
(see Exercise 3.5), so it seems that, for now, this does not really help us.

40 3 Selection

Exercise 3.5. Show that select k xs can be reduced to computing the median
of a list in linear time, i.e. give a linear-time function reduce_select_median
such that

xs 6= [] ^ k < jxs j �!
reduce_select_median k xs 6= [] ^
median (reduce_select_median k xs) = select k xs

3.2 The Median of Medians

Since, as we have seen, computing a true median in every recursive step is too
expensive, the next natural question is: is there something that is almost as
good as a median but easier to compute?

This is indeed the case, and this is where the ingenuity of the algorithm
is hidden: instead of computing the median of all the list elements, we use
another list element M, which is computed as follows:

• chop the list into groups of 5 elements each (possibly with one smaller
group at the end if n is not a multiple of 5)

• compute the median of each of the dn5 e groups (which can be done in
constant time for each group using e.g. insertion sort, since their sizes are
bounded by 5)

• compute the median M of these dn5 e elements (which can be done by a
recursive call to the selection algorithm)

We call M the median of medians. M is not quite as good a pivot as the
true median, but it is still fairly decent:

Theorem 3.4 (Pivoting bounds for the median of medians).
Let xs be a list and let � be either < or >. Define

M := median (map median (chop 5 xs)) .

where the chop function performs the chopping described earlier. Then:

j{{y 2# mset xs j y � M}}j � d0:7 � n + 3e

Proof. The result of chop 5 xs is a list of dn = 5e chunks, each of size at
most 5, i.e. jchop 5 xs j = dn = 5e. Let us split these chunks into two groups
according to whether their median is � M or � M :

Y� := {{ys 2# mset (chop 5 xs) j median ys � M}}
Y� := {{ys 2# mset (chop 5 xs) j median ys � M}}

We clearly have

3.2 The Median of Medians 41

mset xs = (
P

ys chop 5 xs mset ys) (3.8)

mset (chop 5 xs) = Y� + Y� (3.9)

dn = 5e = jY�j + jY�j (3.10)

and since M is the median of the medians of the groups, we also know that:

jY�j < 1
2 � dn = 5e (3.11)

The core idea of the proof is that any group ys 2# Y� can have at most 2
elements that are � M :

j{{y 2# mset ys j y � M}}j
� j{{y 2# mset ys j y � median ys}}j because median ys � M
� jys j div 2 using (3.1)
� 5 div 2 = 2

And of course, since each group has size at most 5, any group in ys 2# Y�
can contribute at most 5 elements. In summary, we have:

8 ys2#Y�: j{{y 2# mset ys j y � M}}j � 2

8 ys2#Y�: j{{y 2# mset ys j y � M}}j � 5 (3.12)

With this, we can begin our estimation of the number of elements � M :

{{y 2# mset xs j y � M}}
= {{y 2# (

P
ys chop 5 xs mset ys) j y � M}} using(3.8)

=
P

ys chop 5 xs {{y 2# mset ys j y � M}}
=
P

ys2#(Y� + Y�) {{y 2# mset ys j y � M}} using (3.9)

Taking the size of both sides, we have

j{{y 2# mset xs j y � M}}j
� Pys2#(Y� + Y�) j{{y 2# mset ys j y � M}}j
=
P

ys2#Y� j{{y 2# mset ys j y � M}}j +P
ys2#Y� j{{y 2# mset ys j y � M}}j

� (
P

ys2#Y� 5) + (
P

ys2#Y� 2) using (3.12)
= 5 � jY�j + 2 � jY�j
= 2 � dn = 5e + 3 � jY�j using (3.10)
� 3:5 � dn = 5e using (3.11)
= 3:5 � dn = 5e � d0:7 � n + 3e

The delicate arithmetic reasoning about rounding in the end can thankfully
be done fully automatically by Isabelle’s linarith tactic. ut

42 3 Selection

3.3 Selection in Linear Time

We now have all the ingredients to write down our algorithm: the base cases
(i.e. sufficiently short lists) can be handled using the naive approach of per-
forming insertion sort and then returning the k -th element. For bigger lists,
we perform the divide-and-conquer approach outlined in Theorem 3.3 using
M as a pivot. We have two recursive calls: one on a list with exactly d0:2 � ne
elements to compute M, and one on a list with at most d0:7 � n + 3e. We will
still need to show later that this actually leads to a linear-time algorithm, but
the fact that 0:7 + 0:2 < 1 is at least encouraging.

The full algorithm looks like this:

chop :: nat) 0a list) 0a list list

chop 0 _ = []

chop _ [] = []

chop n xs = take n xs # chop n (drop n xs)

slow_select :: nat) 0a list) 0a

slow_select k xs = isort xs ! k

slow_median :: 0a list) 0a

slow_median xs = slow_select ((jxs j � 1) div 2) xs

mom_select :: nat) 0a list) 0a

mom_select k xs
= (if jxs j � 20 then slow_select k xs

else let M = mom_select ((djxs j = 5e � 1) div 2)

(map slow_median (chop 5 xs));
(ls ; es ; gs) = partition3 M xs

in if k < jls j then mom_select k ls
else if k < jls j + jes j then M
else mom_select (k � jls j � jes j) gs)

The (partial) correctness statement is simple:

Theorem 3.5 (Partial Correctness of mom_select). Let xs be a list and
k < jxs j. Then if mom_select k xs terminates, we have

mom_select k xs = select k xs .

Proof. Straightforward computation induction using Theorem 3.3. ut

3.4 Time Functions 43

Theorem 3.6 (Termination of mom_select). Let xs be a list and k <

jxs j. Then mom_select k xs terminates.

Proof. We prove termination by using the length of the list xs as a termi-
nation measure. We perform a computation induction and need to show that
this length decreases in every recursive call if 20 < jxs j. This is easy to see:

• The list in the first recursive call has length djxs j = 5e, which is strictly
less than jxs j if 1 < jxs j.

• The length of the list in the second recursive call is at most jxs j � 1: by
induction hypothesis, the first recursive call terminates, so by Theorem 3.5
we know that M = median (map median (chop 5 xs)) and thus:

M 2 set (map median (chop 5 xs))
= fmedian ys j ys 2 set (chop 5 xs)g
� Sys2set (chop 5 xs) set ys = set xs

Hence, M 2 set xs but M =2 set ls and M =2 set gs by construction.
ut

Exercise 3.6. The recursive definition of mom_select handles the cases jxs j
� 20 through the naive algorithm using insertion sort. The constant 20 here
seems somewhat arbitrary. Find the smallest constant n0 for which the algo-
rithm still works. Why do you think 20 was chosen?

3.4 Time Functions

It remains to show now that this indeed leads to a linear-time algorithm. The
time function for our selection algorithm is as follows:

Tmom_select :: nat) 0a list) nat

Tmom_select k xs
= (if jxs j � 20 then Tslow_select k xs

else let xss = chop 5 xs ;
ms = map slow_median xss ;
idx = ((jxs j + 4) div 5 � 1) div 2;

x = mom_select idx ms ;
(ls ; es ; gs) = partition3 x xs

in Tmom_select idx ms + Tchop 5 xs + Tmap Tslow_median xss +

Tpartition3 x xs + Tlength ls + Tlength es + 1 +

(if k < jls j then Tmom_select k ls
else if k < jls j + jes j then 0

else Tmom_select (k � jls j � jes j) gs))

44 3 Selection

We can then prove

Tmom_select k xs � T’mom_select jxs j
where the upper bound T’mom_select is defined as follows:

T’mom_select :: nat) nat

T’mom_select n
= (if n � 20 then 463

else T’mom_select d0:2 � ne + T’mom_select d0:7 � n + 3e + 17 � n + 50)

The time functions of the auxiliary functions used here can be found in Sec-
tion B.2 in the appendix. The proof is a simple computation induction using
Theorem 3.4 and the time bounds for the auxiliary functions from Chapter B
in the appendix.

The next section will be dedicated to showing that T’mom_select 2 O(n).

Exercise 3.7. Show that the upper bound d0:7 � n + 3e is fairly tight by
giving an infinite family (xsi)i2� of lists with increasing lengths for which
more than 70 % of the elements are larger than the median of medians (with
chopping size 5). In Isabelle terms: define a function f :: nat) nat list such
that 8n : jf n j < jf (n + 1)j and

j{{y 2# mset (f n) j y > mom (f n)}}j
jf n j > 0:7

where mom xs = median (map median (chop 5 xs)) .

3.5 Akra–Bazzi Light

The function T’mom_select (let us write it as f for now) fulfils the recurrence

20 < n �! f n = f d0:2 � ne + f d0:7 � n + 3e + 17 � n + 50

Such divide-and-conquer recurrences are beyond the “normal” Master Theo-
rem, but a generalisation, the Akra–Bazzi Theorem [3, 47, 17], does apply to
them. Let us first abstract the situation a bit and consider the recurrence

20 < n �! f n = f da � n + be + f dc � n + de + C1 � n + C2

where 0 < a ; b < 1 and C 1; C 2 > 0. The Akra–Bazzi Theorem then tells
us that such a function is O(n) if (and only if) a + b < 1. We will prove one
direction of this (the one we need) now – Akra–Bazzi Light, so to say.

3.5 Akra–Bazzi Light 45

Instead of presenting the full theorem statement and its proof right away,
let us take a more explorative approach. What we want to prove in the end
is that there are real constants C 3 > 0 and C 4 such that f n � C3 � n +

C4 for all n. Suppose these constants are fixed already and now we want to
prove that the inequality holds for them. For simplicity of the presentation,
we assume b; d � 0, but note that these assumptions are unnecessary and
the proof still works for negative b and d if we replace b and d with max 0 b
and max 0 d .

The obvious approach to show this is by induction on n, following the
structure of the recurrence above. To do this, we use complete induction
(i.e. the induction hypothesis holds for all n 0 < n)1 and a case analysis on n
> n0 (where n0 is some constant we will determine later).

The two cases we have to show in the induction are then:

Base case: 8n�n0: f n � C 3 � n + C 4

Step: 8n>n0: (8m<n : f m � C 3 � m + C 4) �! f n � C 3 � n + C 4

We can see that in order to even be able to apply the induction hypothesis
in the induction step, we need da � n + be < n. We can make the estimate2

da � n + be � a � n + b + 1
!
< n

and then solve for n, which gives us n
!
> b + 1

1 � a . If we do the same for c and
d as well, we get the conditions

n0 � b + 1

1 � a
and n0 � d + 1

1 � c
(3.13)

However, it will later turn out that these are implied by the other conditions
we will have accumulated anyway.

Now that we have ensured that the basic structure of our induction will
work out, let us continue with the two cases.

The base cases (n � n0) is fairly uninteresting: we can simply choose C 4

to be large enough to satisfy all of them.
In the recursive step, unfolding one step of the recurrence and applying

the induction hypotheses leaves us with the following proof obligation

C3 � da � n + be + C4 + (C3 � dc � n + de + C4) + C1 � n + C2
!
�

C3 � n + C4 ,

1 In Isabelle, the corresponding rule is called less_induct.
2 The notation

!

< stands for “must be less than”. It emphasises that this inequality
is not a consequence of what we have shown so far, but something that we still
need to show, or in this case something that we need to ensure by adding suitable
preconditions.

46 3 Selection

or, equivalently,

C3 � (da � n + be + dc � n + de � n) + C1 � n + C2 + C4
!
� 0 ,

We estimate the left-hand side like this:

C3 � (da � n + be + dc � n + de � n) + C1 � n + C2 + C4

� C3 � (a � n + b + 1 + (c � n + d + 1) � n) + C1 � n + C2 + C4

= C3 � (b + d + 2) + C2 + C4 � (C3 � (1 � a � c) � C1) � n (�)
� C3 � (b + d + 2) + C2 + C4 � (C3 � (1 � a � c) � C1) � n0 (y)
!
� 0

The step from (�) to (y) uses the fact that n > n0 and requires the factor C3

� (1 � a � c) � C1 in front of the n to be positive, i.e. we need to add the
assumption

C3 >
C1

1 � a � c
. (3.14)

The term (y) (which we want to be � 0) is now a constant. If we solve that
inequality for C 3, we get the following two additional conditions:

n0 >
b + d + 2

1 � a � c
and C3 � C1 � n0 + C2 + C4

(1 � a � c) � n0 � b � d � 2
(3.15)

The former of these directly implies our earlier conditions (3.13), so we can
safely discard those now.

Now all we have to do is to find a combinations of n0, C 3, and C 4 that
satisfy (3.14) and (3.15). This is straightforward:

n1 := max n0

��
b + d + 2

1 � a � c

�
+ 1

�
C4 := Max ff n j n � 20g

C3 := max
�

C1

1 � a � c

� �
C1 � n1 + C2 + C4

(1 � a � c) � n1 � b � d � 2

�
And with that, the induction goes through and we get the following theorem:

Theorem 3.7 (Akra Bazzi Light).

a > 0 ^ c > 0 ^ a + c < 1 ^ C 1 � 0 ^
(8n>n0: f n = f da � n + be + f dc � n + de + C 1 � n + C 2) �!
(9C 3 C 4: 8n : f n � C 3 � n + C 4)

Exercise 3.8.

1. Suppose that instead of groups of 5, we now chop into groups of size l � 1.
Prove a corresponding generalisation of Theorem 3.4.

2. Examine (on paper only): how does this affect correctness and running
time of our selection algorithm? Why do you think l = 5 was chosen?

Part II

Search Trees

4

Binary Trees

Binary trees are defined as a recursive data type:

datatype 0a tree = Leaf j Node (0a tree) 0a (0a tree)

The following syntactic sugar is sprinkled on top:

hi � Leaf
hl ; x ; ri � Node l x r

The trees l and r are the left and right children of the node hl ; x ; ri.
Because most of our tree will be binary trees, we drop the “binary” most

of the time and have also called the type merely tree.
When displaying a tree in the usual graphical manner we show only the

Nodes. For example, hhhi; 3; hii; 9; hhi; 7; hiii is displayed like this:

9

3 7

The (label of the) root node is 9. The depth (or level) of some node (or leaf)
in a tree is the distance from the root. We use these concepts only informally.

4.1 Basic Functions

Two canonical functions on data types are set and map:

http://isabelle.in.tum.de/library/HOL/HOL-Library/Tree.html

50 4 Binary Trees

set_tree :: 0a tree) 0a set

set_tree hi = fg
set_tree hl ; x ; ri = set_tree l [fxg [set_tree r

map_tree :: (0a) 0b)) 0a tree) 0b tree

map_tree f hi = hi
map_tree f hl ; x ; ri = hmap_tree f l ; f x ; map_tree f ri

The inorder, preorder and postorder traversals (we omit the latter) list
the elements in a tree in a particular order:

inorder :: 0a tree) 0a list

inorder hi = []

inorder hl ; x ; ri = inorder l @ [x] @ inorder r

preorder :: 0a tree) 0a list

preorder hi = []

preorder hl ; x ; ri = x # preorder l @ preorder r

These two size functions count the number of Nodes and Leaf s in a tree:

size :: 0a tree) nat

jhij = 0

jhl ; _; rij = jl j + jr j + 1

size1 :: 0a tree) nat

jhij1 = 1

jhl ; _; rij1 = jl j1 + jr j1

The syntactic sugar jt j for size t and jt j1 for size1 t is only used in this text,
not in the Isabelle theories.

Induction proves a convenient fact that explains the name size1:

jt j1 = jt j + 1

The height and the minimal height of a tree are defined as follows:

4.2 Complete Trees 51

height :: 0a tree) nat

h hi = 0

h hl ; _; ri = max (h l) (h r) + 1

min_height :: 0a tree) nat

mh hi = 0

mh hl ; _; ri = min (mh l) (mh r) + 1

You can think of them as the longest and shortest (cycle-free) path from the
root to a leaf. The real names of these functions are height and min_height.
The abbreviations h and mh are only used in this text, not in the Isabelle
theories.

The obvious properties h t � jt j and mh t � h t and the following classical
properties have easy inductive proofs:

2mh t � jt j1 jt j1 � 2h t

We will simply use these fundamental properties without referring to them
by a name or number.

The set of subtrees of a tree is defined as follows:

subtrees :: 0a tree) 0a tree set

subtrees hi = fhig
subtrees hl ; a ; ri = fhl ; a ; rig [subtrees l [subtrees r

Note that every tree is a subtree of itself.

Exercise 4.1. Function inorder has quadratic complexity because the run-
ning time of (@) is linear in the length of its first argument. Define a function
inorder2 :: 0a tree) 0a list) 0a list that avoids (@) but accumulates the
result in its second parameter via (#) only. Its running time should be linear
in the size of the tree. Prove inorder2 t xs = inorder t @ xs.

4.2 Complete Trees

A complete tree is one where all the leaves are on the same level. An example
is shown in Figure 4.1. The predicate complete is defined recursively:

52 4 Binary Trees

�

�

� �

�

� �

Fig. 4.1. A complete tree

complete :: 0a tree) bool

complete hi = True
complete hl ; _; ri = (h l = h r ^ complete l ^ complete r)

This recursive definition is equivalent with the above definition that all leaves
must have the same distance from the root. Formally:

Lemma 4.1. complete t ! mh t = h t

Proof. The proof is by induction and case analyses on min and max. ut
The following classic property of complete trees is easily proved by induc-

tion:

Lemma 4.2. complete t �! jt j1 = 2h t

It turns out below that this is in fact a defining property of complete trees.
For complete trees we have (2:: 0b)mh t � jt j1 = 2h t. For incomplete trees

the equalities the = sign becomes a < as the following two lemmas prove:

Lemma 4.3. : complete t �! jt j1 < 2h t

Proof. The proof is by induction. We focus in the induction step where t =

hl ; x ; ri. If t is incomplete, there are a number of cases and we prove jt j1 <

2h t in each case. If h l 6= h r, consider the case h l < h r (the case h r <

h l is symmetric). From 2h l < 2h r, jl j1 � 2h l and jr j1 � 2h r the claim
follows: jt j1 = jl j1 + jr j1 � 2h l + 2h r < 2 � 2h r = 2h t. If h l = h r, then
either l or r must be incomplete. We consider the case : complete l (the case
: complete r is symmetric). From the IH jl j1 < 2h l, jr j1 � 2h r and h l =

h r the claim follows: jt j1 = jl j1 + jr j1 < 2h l + 2h r = 2 � 2h r = 2h t. ut
Lemma 4.4. : complete t �! 2mh t < jt j1
The proof of this lemma is completely analogous to the previous proof except
that one also needs to use Lemma 4.1.

From the contrapositive of Lemma 4.3 one obtains jt j1 = 2h t �! com-
plete t, the converse of Lemma 4.2. Thus we arrive at:

4.3 Almost Complete Trees 53

Corollary 4.5. complete t ! jt j1 = 2h t

The complete trees are precisely the ones where the height is exactly the
logarithm of the number of leaves.

Exercise 4.2. Define a function mcs that computes a maximal complete sub-
tree of some given tree. You are allowed only one traversal of the input but
you may freely compute the height of trees and may even compare trees for
equality. You are not allowed to use complete or subtrees.

Prove that mcs returns a complete subtree (which should be easy) and
that it is maximal in height:

u 2 subtrees t ^ complete u �! h u � h (mcs t)

Bonus: get rid of any tree equality tests in mcs.

4.3 Almost Complete Trees

An almost complete tree is one where the leaves may occur not just at the
lowest level but also one level above:

acomplete :: 0a tree) bool

acomplete t = (h t � mh t � 1)

An example of an almost complete tree is shown in Figure 4.2. You can think
of an almost complete tree as a complete tree with (possibly) some additional
nodes one level below the last full level.

�

�

� �

�

�

�

� �

�

�

Fig. 4.2. Almost complete tree

Almost complete trees are important because among all the trees with the
same number of nodes they have minimal height:

54 4 Binary Trees

Lemma 4.6. acomplete s ^ js j � jt j �! h s � h t

Proof. The proof is by cases. If complete s then, by Lemma 4.2, 2h s = js j1
� jt j1 � 2h t and thus h s � h t. Now assume : complete s. Then Lemma 4.4
yields 2mh s < js j1 � jt j1 � 2h t and thus mh s < h t. Furthermore we have
h s � mh s � 1 (from acomplete s), h s 6= mh s (from Lemma 4.1) and
mh s � h s, which together imply mh s + 1 = h s. With mh s < h t this
implies h s � h t. ut
This is relevant for search trees because their height determines the worst
case running time. Almost complete trees are optimal in that sense.

The following lemma yields an explicit formula for the height of an almost
complete tree:

Lemma 4.7. acomplete t �! h t = dlg jt j1e
Proof. The proof is by cases. If t is complete, the claim follows from
Lemma 4.2. Now assume t is incomplete. Then h t = mh t + 1 because
acomplete t, mh t � h t and complete t ! mh t = h t (Lemma 4.1).
Together with jt j1 � 2h t this yields jt j1 � 2mh t + 1 and thus lg jt j1 � mh t
+ 1. By Lemma 4.4 we obtain mh t < lg jt j1. These two bounds for lg jt j1
together imply the claimed h t = dlg jt j1e. ut
In the same manner we also obtain:

Lemma 4.8. acomplete t �! mh t = blg jt j1c

4.3.1 Converting a List into an Almost Complete Tree

We will now see how to convert a list xs into an almost complete tree t such
that inorder t = xs. If the list is sorted, the result is an almost complete
binary search tree (see the next chapter). The basic idea is to cut the list
in two halves, turn them into almost complete trees recursively and combine
them. But cutting up the list in two halves explicitly would lead to an n �
lg n algorithm but we want a linear one. Therefore we use an additional nat
parameter to tell us how much of the input list should be turned into a tree.
The remaining list is returned with the tree:

bal :: nat) 0a list) 0a tree � 0a list

bal n xs
= (if n = 0 then (hi; xs)

else let m = n div 2;

(l ; ys) = bal m xs ;

4.3 Almost Complete Trees 55

(r ; zs) = bal (n � 1 � m) (tl ys)
in (hl ; hd ys ; ri; zs))

The trick is not to chop xs in half but n because we assume that arithmetic
is constant-time. Hence bal runs in linear time (see Exercise 4.4). Figure 4.3
shows the result of bal 10 [0::9].

5

2

1

0

4

3

8

7

6

9

Fig. 4.3. Balancing [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

Balancing some prefix or all of a list or tree is easily derived:

bal_list :: nat) 0a list) 0a tree

bal_list n xs = fst (bal n xs)

balance_list :: 0a list) 0a tree

balance_list xs = bal_list jxs j xs

bal_tree :: nat) 0a tree) 0a tree

bal_tree n t = bal_list n (inorder t)

balance_tree :: 0a tree) 0a tree

balance_tree t = bal_tree jt j t

Correctness

The following lemma clearly expresses that bal n xs turns the prefix of length
n of xs into a tree and returns the corresponding suffix of xs :

56 4 Binary Trees

Lemma 4.9. n � jxs j ^ bal n xs = (t ; zs) �!
xs = inorder t @ zs ^ jt j = n

Proof by complete induction on n, assuming that the property holds for all
values below n. If n = 0 the claim is trivial. Now assume n 6= 0 and let m = n
div 2 and m 0 = n � 1 � m (and thus m ; m 0 < n). From bal n xs = (t ; zs)
we obtain l, r and ys such that bal m xs = (l ; ys), bal m 0 (tl ys) = (r ;
zs) and t = hl ; hd ys ; ri. Because m < n � jxs j the induction hypothesis
implies xs = inorder l @ ys ^ jl j = m (1). This in turn implies m 0 � jtl ys j
and thus the induction hypothesis implies tl ys = inorder r @ zs ^ jr j =
m 0 (2). Properties (1) and (2) together with t = hl ; hd ys ; ri imply the claim
xs = inorder t @ zs ^ jt j = n because ys 6= []. ut

The corresponding correctness properties of the derived functions are easy
consequences:

n � jxs j �! inorder (bal_list n xs) = take n xs

inorder (balance_list xs) = xs

n � jt j �! inorder (bal_tree n t) = take n (inorder t)

inorder (balance_tree t) = inorder t

To prove that bal returns an almost complete tree we determine its height
and minimal height.

Lemma 4.10. n � jxs j ^ bal n xs = (t ; zs) �! h t = dlg (n + 1)e

Proof. The proof structure is the same as for Lemma 4.9 and we reuse the
variable names introduced there. In the induction step we obtain the simplified
induction hypothesese h l = dlg (m + 1)e and h r = dlg (m 0 + 1)e. This
leads to

h t = max (h l) (h r) + 1

= h l + 1 because m 0 � m
= dlg (m + 1) + 1e
= dlg (n + 1)e by (2.29) ut

The following complementary lemma is proved in the same way:

Lemma 4.11. n � jxs j ^ bal n xs = (t ; zs) �! mh t = blg (n + 1)c
By definition of acomplete and because dxe � bxc � 1 we obtain that bal
(and consequently the functions that build on it) returns an almost complete
tree:

Corollary 4.12. n � jxs j ^ bal n xs = (t ; ys) �! acomplete t

4.4 Augmented Trees 57

4.3.2 Exercises

Exercise 4.3. Find a formula B such that acomplete hl ; x ; ri = B where
B may only contain the functions acomplete, complete, height, arithmetic
and boolean operations, l and r, but in particular not min_height or Node
(= h_; _; _i). Prove acomplete hl ; x ; ri = B.

Exercise 4.4. Prove that the running time of function bal is linear in its first
argument. (Isabelle hint: you need to refer to bal as Balance :bal.)

4.4 Augmented Trees

A tree of type 0a tree only stores elements of type 0a. However, it is frequently
necessary to store some additional information of type 0b in each node too,
usually for efficiency reasons. Typical examples are:

• The size or the height of the tree. Because recomputing them requires
traversing the whole tree.

• Lookup tables where each key of type 0a is associated with a value of type
0b.

In this case we simply work with trees of type (0a � 0b) tree and call them
augmented trees. As a result we need to redefine a few functions that should
ignore the additional information. For example, function inorder, when ap-
plied to an augmented tree, should return an 0a list. Thus we redefine it in
the obvious way:

inorder :: (0a � 0b) tree) 0a list

inorder hi = []

inorder hl ; (a ; _); ri = inorder l @ a # inorder r

Another example is set_tree :: (0a � 0b) tree) 0a set. In general, if a function
f is originally defined on type 0a tree but should ignore the 0b-values in an
(0a � 0b) tree then we assume that there is a corresponding revised definition
of f on augmented trees that focuses on the 0a-values just like inorder above
does. Of course functions that do not depend on the information in the nodes,
e.g. size and height, stay unchanged.

Note that there are two alternative redefinitions of inorder (and similar
functions): map fst � Tree :inorder or Tree :inorder � map_tree fst where
Tree :inorder is the original function.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree2.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree2.html

58 4 Binary Trees

4.4.1 Maintaining Augmented Trees

Maintaining the 0b-values in a tree can be hidden inside a suitable smart
version of Node that has only a constant time overhead. Take the example of
augmentation by size:

sz :: (0a � nat) tree) nat

sz hi = 0

sz h_; (_; n); _i = n

node_sz :: (0a � nat) tree) 0a) (0a � nat) tree) (0a � nat) tree

node_sz l a r = hl ; (a ; sz l + sz r + 1); ri

A (0a � nat) tree satisfies invar_sz if the size annotation of every node
is computed from its children as specified in node_sz :

invar_sz :: (0a � nat) tree) bool

invar_sz hi = True
invar_sz hl ; (_; n); ri
= (n = sz l + sz r + 1 ^ invar_sz l ^ invar_sz r)

This property is preserved by node_sz (i.e. invar_sz l ^ invar_sz r �!
invar_sz (node_sz l a r)) and it guarantees that sz returns the size:

invar_sz t �! sz t = jt j

We can generalize this example easily. Assume we have a constant zero ::
0b and a function f :: 0b) 0a) 0b) 0b which we iterate over the tree:

F :: (0a � 0b) tree) 0b

F hi = zero
F hl ; (a ; _); ri = f (F l) a (F r)

This generalizes the definition of size. Let node_f compute the 0b-value from
the 0b-value of its children via f :

b_val :: (0a � 0b) tree) 0b

b_val hi = zero

4.4 Augmented Trees 59

b_val h_; (_; b); _i = b

node_f :: (0a � 0b) tree) 0a) (0a � 0b) tree) (0a � 0b) tree

node_f l a r = hl ; (a ; f (b_val l) a (b_val r)); ri

If all 0b-values are computed as in node_f

invar_f :: (0a � 0b) tree) bool

invar_f hi = True
invar_f hl ; (a ; b); ri
= (b = f (b_val l) a (b_val r) ^ invar_f l ^ invar_f r)

then all 0b-values equal F : invar_f t �! b_val t = F t.

4.4.2 Exercises

Exercise 4.5. Augment trees by a pair of a boolean and something else where
the boolean indicates whether the tree is complete or not. Define ch, node_ch
and invar_ch as in Section 4.4.1 and prove the following properties:

invar_ch t �! ch t = (complete t ; ?)
invar_ch l ^ invar_ch r �! invar_ch (node_ch l a r)

Exercise 4.6. Assume type 0a is of class linorder and augment each Node
with the maximum value in that tree. Following Section 4.4.1 (but mind
the option type!) define mx :: (0a � 0b) tree) 0b option, node_mx and
invar_mx and prove

invar_mx t �!
mx t = (if t = hi then None else Some (Max (set_tree t)))

where Max is the predefined maximum operator on finite, non-empty sets.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree2.html

5

Binary Search Trees

The purpose of this chapter is threefold: to introduce binary search trees
(BSTs), to discuss their correctness proofs, and to provide a first example of
an abstract data type, a notion discussed in more detail in the next chapter.

Search trees are a means for storing and accessing collections of elements
efficiently. In particular they can support sets and maps. We concentrate on
sets. We have already seen function set_tree that maps a tree to the set of its
elements. This is an example of an abstraction function that maps concrete
data structures to the abstract values that they represent.

BSTs require a linear ordering on the elements in the tree (as in Chapter
Sorting). For each node, the elements in the left child are smaller than the
root and the elements in the right child are bigger:

bst :: (0a ::linorder) tree) bool

bst hi = True
bst hl ; a ; ri
= ((8 x2set_tree l : x < a) ^ (8 x2set_tree r : a < x) ^ bst l ^ bst r)

This is an example of a (coincidentally almost complete) BST:

6

3

2 5

9

8

It is obvious how to search for an element in a BST by comparing the
element with the root and descending into one of the two children if you have

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree_Set.html

62 5 Binary Search Trees

not found it yet. In the worst case this takes time proportional to the height
of the tree. In later chapters we discuss a number of methods for ensuring
that the height of the tree is logarithmic in its size. For now we ignore all
efficiency considerations and permit our BSTs to degenerate.

Exercise 5.1. The above recursive definition of bst is not a direct transla-
tion of the description “For each node” given in the text. For a more direct
translation define a function

nodes :: 0a tree) (0a tree � 0a � 0a tree) set

that collects all the nodes as triples (l ; a ; r). Now define bst_nodes as
bst_nodes t = (8 (l ;a ;r) 2 nodes t : : : :) and prove bst_nodes t = bst t.

5.1 Interfaces

Trees are concrete data types that provide the building blocks for realizing
abstract data types like sets. The abstract type has a fixed interface, i.e. set of
operations, through which the values of the abstract type can be manipulated.
The interface hides all implementation detail. In the Search Tree part of the
book we focus on the abstract type of sets with the following interface:

empty :: 0s
insert :: 0a) 0s) 0s
delete :: 0a) 0s) 0s
isin :: 0s) 0a) bool

where 0s is the type of sets of elements of type 0a. Most of our implementa-
tions of sets will be based on variants of BSTs and will require a linear order
on 0a, but the general interface does not require this. The correctness of an
implementation of this interface will be proved by relating it back to HOL’s
type 0a set via an abstraction function, e.g. set_tree.

5.2 Implementing Sets via unbalanced BSTs

So far we have compared elements via =, � and <. Now we switch to a
comparator-based approach:

datatype cmp_val = LT j EQ j GT

cmp :: (0a :: linorder)) 0a) cmp_val

cmp x y = (if x < y then LT else if x = y then EQ else GT)

5.2 Implementing Sets via unbalanced BSTs 63

We will frequently phrase algorithms in terms of cmp, LT, EQ and GT
instead of <, = and >. This leads to more symmetric code. If some type
comes with its own primitive cmp function this can yield a speed-up over the
above generic cmp function.

Below you find an implementation of the set interface in terms of BSTs.
Functions isin and insert are self-explanatory. Deletion is more interesting.

empty :: 0a tree

empty = hi

isin :: 0a tree) 0a) bool

isin hi _ = False
isin hl ; a ; ri x
= (case cmp x a of LT) isin l x j EQ) True j GT) isin r x)

insert :: 0a) 0a tree) 0a tree

insert x hi = hhi; x ; hii
insert x hl ; a ; ri = (case cmp x a of

LT) hinsert x l ; a ; ri j
EQ) hl ; a ; ri j
GT) hl ; a ; insert x ri)

delete :: 0a) 0a tree) 0a tree

delete x hi = hi
delete x hl ; a ; ri
= (case cmp x a of

LT) hdelete x l ; a ; ri j
EQ) if r = hi then l

else let (a 0; r 0) = split_min r in hl ; a 0; r 0i j
GT) hl ; a ; delete x ri)

split_min :: 0a tree) 0a � 0a tree

split_min hl ; a ; ri
= (if l = hi then (a ; r) else let (x ; l 0) = split_min l in (x ; hl 0; a ; ri))

5.2.1 Deletion

Function delete deletes a from hl ; a ; ri (where r 6= hi) by replacing a with
a 0 and r by r 0 where

64 5 Binary Search Trees

a 0 is the leftmost (least) element of r, also called the inorder successor of a,
r 0 is the remainder of r after removing a 0.

We call this deletion by replacing. Of course one can also obtain a 0 as the
inorder predecessor of a in l.

An alternative is to delete a from hl ; a ; ri by “joining” l and r :

delete2 :: 0a) 0a tree) 0a tree

delete2 _ hi = hi
delete2 x hl ; a ; ri = (case cmp x a of

LT) hdelete2 x l ; a ; ri j
EQ) join l r j
GT) hl ; a ; delete2 x ri)

join :: 0a tree) 0a tree) 0a tree

join t hi = t
join hi t = t
join ht1; a ; t2i ht3; b; t4i
= (case join t2 t3 of
hi) ht1; a ; hhi; b; t4ii j
hu2; x ; u3i) hht1; a ; u2i; x ; hu3; b; t4ii)

We call this deletion by joining. The characteristic property of join is
inorder (join l r) = inorder l @ inorder r.

The definition of join may appear needlessly complicated. Why not this
much simpler version:

join0 t hi = t
join0 hi t = t
join0 ht1; a ; t2i ht3; b; t4i = ht1; a ; hjoin0 t2 t3; b; t4ii

Because with this version of join, deletion may almost double the height of
the tree, in contrast to join and also deletion by replacing, where the height
cannot increase:

Exercise 5.2. First prove that join behaves well:

h (join l r) � max (h l) (h r) + 1

Now show that join0 behaves badly: find an upper bound ub of h (join0 l r)
such that ub is a function of h l and h r. Prove h (join0 l r) � ub and prove
that ub is a tight upper bound if l and r are complete trees.

We focus on delete, deletion by replacing, in the rest of the chapter.

5.4 Correctness Proofs 65

5.3 Correctness

Why is the above implementation correct? Roughly speaking, because the
implementations of empty, insert, delete and isin on type 0a tree simulate
the behaviour of fg, [,� and 2 on type 0a set. Taking the abstraction function
into account we can formulate the simulation precisely:

set_tree empty = fg
set_tree (insert x t) = set_tree t [fxg
set_tree (delete x t) = set_tree t � fxg
isin t x = (x 2 set_tree t)

However, the implementation only works correctly on BSTs. Therefore we
need to add the precondition bst t to all but the first property. But why are we
permitted to assume this precondition? Only because bst is an invariant of
this implementation: bst holds for empty, and both insert and delete preserve
bst. Therefore every tree that can be manufactured through the interface is
a BST. Of course this adds another set of proof obligations for correctness,
invariant preservation:

bst empty

bst t �! bst (insert x t)

bst t �! bst (delete x t)

When looking at the abstract data type of sets from the user (or ‘client’)
perspective, we would call the collection of all proof obligations for the cor-
rectness of an implementation the specification of the abstract type.

Exercise 5.3. Verify the implementation in Section 5.2 by showing all the
proof obligations above, without the detour via sorted lists explained below.

5.4 Correctness Proofs

It turns out that direct proofs of the properties in the previous section are
cumbersome — at least for delete and for proof assistants like Isabelle. Yet
the correctness of the implementation is quite obvious to most (functional)
programmers. Which is why most algorithm texts do not spend any time on
functional correctness of search trees and concentrate on non-obvious struc-
tural properties that imply the logarithmic height of the trees — of course
our simple BSTs do not guarantee the latter.

We will now present how the vague notion of “obvious” can be concretized
and automated to such a degree that we do not need to discuss functional cor-
rectness of search tree implementations again in this book. This is because our

66 5 Binary Search Trees

approach is quite generic: it works not only for the BSTs in this chapter but
also for the more efficient variants discussed in later chapters. The remainder
of this section can be skipped if one is not interested in proof automation.

5.4.1 The Idea

The key idea [54] is to express bst and set_tree via inorder :

bst t = sorted (inorder t) and set_tree t = set (inorder t)

where

sorted :: 0a list) bool

sorted [] = True
sorted [_] = True
sorted (x # y # zs) = (x < y ^ sorted (y # zs))

Note that this is “sorted w.r.t. (<)” whereas in the chapter on sorting sorted
was defined as “sorted w.r.t. (�)”.

Instead of showing directly that BSTs implement sets, we show that they
implement an intermediate specification based on lists (and later that the
list-based specification implies the set-based one). We can assume that the
lists are sorted because they are abstractions of BSTs. Insertion and deletion
on sorted lists can be defined as follows:

ins_list :: 0a) 0a list) 0a list

ins_list x [] = [x]
ins_list x (a # xs)
= (if x < a then x # a # xs

else if x = a then a # xs else a # ins_list x xs)

del_list :: 0a) 0a list) 0a list

del_list _ [] = []

del_list x (a # xs) = (if x = a then xs else a # del_list x xs)

The abstraction function from trees to lists is function inorder. The speci-
fication in Figure 5.1 expresses that empty, insert, delete and isin implement
[], ins_list, del_list and �xs x : x 2 set xs. One nice aspect of this specifica-
tion is that it does not require us to prove invariant preservation explicitly:
it follows from the fact (proved below) that ins_list and del_list preserve
sorted.

5.4 Correctness Proofs 67

inorder empty = []

sorted (inorder t) �! inorder (insert x t) = ins_list x (inorder t)

sorted (inorder t) �! inorder (delete x t) = del_list x (inorder t)

bst t �! isin t x = (x 2 set_tree t)

Fig. 5.1. List-based Specification of BSTs

5.4.2 BSTs Implement Sorted Lists — A Framework

We present a library of lemmas that automate the functional correctness
proofs for the BSTs in this chapter and the more efficient variants in later
chapters. This library is motivated by general considerations concerning the
shape of formulas that arise during verification.

As a motivating example we examine how to prove

sorted (inorder t) �! inorder (insert x t) = ins_list x (inorder t)

The proof is by induction on t and we consider the case t = hl ; a ; ri such
that x < a. Ideally the proof looks like this:

inorder (insert x t) = inorder (insert x l) @ a # inorder r
= ins_list x (inorder l) @ a # inorder r
= ins_list x (inorder l @ a # inorder r) = ins_list x t

The first and last step are by definition, the second step by induction hypothe-
sis, and the third step by lemmas in Figure 5.2: (5.1) rewrites the assumption
sorted (inorder t) to sorted (inorder l @ [a]) ^ sorted (a # inorder
r), thus allowing (5.5) to rewrite the term ins_list x (inorder l @ a #

inorder r) to ins_list x (inorder l) @ a # inorder r .
The lemma library in Figure 5.2 helps to prove the properties in Fig-

ure 5.1. These proofs are by induction on t and lead to (possibly nested) tree
constructor terms like hht1; a1; t2i; a2; t3i where the t i and a i are variables.
Evaluating inorder of such a tree leads to a list of the following form:

inorder t1 @ a1 # inorder t2 @ a2 # : : : # inorder tn

Now we discuss the lemmas in Figure 5.2 that simplify the application of
sorted, ins_list and del_list to such terms.

Terms of the form sorted (xs1 @ a1 # xs2 @ a2 # : : : # xsn) are
decomposed into the following basic formulas

sorted (xs @ [a]) (simulating 8 x2set xs : x < a)
sorted (a # xs) (simulating 8 x2set xs : a < x)
a < b

by the rewrite rules (5.1)–(5.2). Lemmas (5.3)–(5.4) enable deductions from
basic formulas.

68 5 Binary Search Trees

sorted (xs @ y # ys) = (sorted (xs @ [y]) ^ sorted (y # ys)) (5.1)

sorted (x # xs @ y # ys)
= (sorted (x # xs) ^ x < y ^ sorted (xs @ [y]) ^ sorted (y # ys)) (5.2)

sorted (x # xs) �! sorted xs (5.3)

sorted (xs @ [y]) �! sorted xs (5.4)

sorted (xs @ [a]) =) ins_list x (xs @ a # ys) = (5.5)

(if x < a then ins_list x xs @ a # ys else xs @ ins_list x (a # ys))

sorted (xs @ a # ys) =) del_list x (xs @ a # ys) = (5.6)

(if x < a then del_list x xs @ a # ys else xs @ del_list x (a # ys))

sorted (x # xs) = ((8 y2set xs : x < y) ^ sorted xs) (5.7)

sorted (xs @ [x]) = (sorted xs ^ (8 y2set xs : y < x)) (5.8)

Fig. 5.2. Lemmas for sorted, ins_list, del_list

Terms of the form ins_list x (xs1 @ a1 # xs2 @ a2 # : : : # xsn)
are rewritten with equation (5.5) (and the defining equations for ins_list) to
push ins_list inwards. Terms of the form del_list x (xs1 @ a1 # xs2 @ a2

: : : # xsn) are rewritten with equation (5.6) (and the defining equations
for del_list) to push del_list inwards.

The isin property in Figure 5.1 can be proved with the help of (5.1), (5.7)
and (5.8).

The lemmas in Figure 5.2 form the complete set of basic lemmas on which
the automatic proofs of almost all search trees in the book rest; only splay
trees (see Chapter 21) need additional lemmas.

5.4.3 Sorted Lists Implement Sets

It remains to be shown that the list-based specification (Figure 5.1) implies
the set-based correctness properties in Section 5.3. Remember that bst t =

sorted (inorder t). The correctness properties

set_tree empty = fg
sorted (inorder t) �! set_tree (insert x t) = set_tree t [fxg
sorted (inorder t) �! set_tree (delete x t) = set_tree t � fxg
sorted (inorder t) �! isin t x = (x 2 set_tree t)

are a consequence of set_tree t = set (inorder t) (a basic tree lemma), the
properties in Figure 5.1 and the inductive correctness properties

set (ins_list x xs) = set xs [fxg
sorted xs �! set (del_list x xs) = set xs � fxg

5.5 Interval Trees 69

Preservation of the invariant

sorted (inorder empty)

sorted (inorder t) �! sorted (inorder (insert x t))

sorted (inorder t) �! sorted (inorder (delete x t))

are trivial or consequences of the properties in Figure 5.1 and the preservation
of sorted by ins_list and del_list :

sorted xs �! sorted (ins_list x xs)

sorted xs �! sorted (del_list x xs)

This means in particular that preservation of sorted � inorder is guaranteed
for any implementation of empty, insert and delete that satisfies the list-
based specification in Figure 5.1.

5.5 Interval Trees

In this section we study binary trees for representing a set of intervals, called
interval trees. In addition to the usual insertion and deletion functions of
standard BSTs, interval trees support a function for determining whether a
given interval overlaps with some interval in the tree.

5.5.1 Augmented BSTs

The efficient implementation of the search for an overlapping interval relies
on an additional piece of information in each node. Thus interval trees are
another example of augmented trees as introduced in Section 4.4. We reuse
the modified definitions of set_tree and inorder from that section. Moreover
we use a slightly adjusted version of isin :

isin :: (0a � 0b) tree) 0a) bool

isin hi _ = False
isin hl ; (a ; _); ri x
= (case cmp x a of LT) isin l x j EQ) True j GT) isin r x)

This works for any kind of augmented BST, not just interval trees.

5.5.2 Intervals

An interval 0a ivl is simply a pair of lower and upper bound, accessed by
functions low and high, respectively. Intuitively, an interval represents the

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Interval_Tree.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Interval_Tree.html

70 5 Binary Search Trees

closed set between low and high. The standard mathematical notation is [l; h],
the Isabelle notation is fl ::hg. We restrict ourselves to non-empty intervals:

low p � high p

Type 0a can be any linearly ordered type with a minimum element ? (for
example, the natural numbers or the real numbers extended with �1). In-
tervals can be linearly ordered by first comparing low, then comparing high.
The definitions are as follows:

(x < y) = (low x < low y _ low x = low y ^ high x < high y)
(x � y) = (low x < low y _ low x = low y ^ high x � high y)

Two intervals overlap if they have at least one point in common:

overlap x y = (low y � high x ^ low x � high y)

The readers should convince themselves that overlap does what it is supposed
to do: overlap x y = (flow x ::high xg \ flow y ::high yg 6= fg)

We also define the concept of an interval overlapping with some interval
in a set:

has_overlap S y = (9 x2S : overlap x y)

5.5.3 Interval Trees

An interval tree associates to each node a number max_hi, which records the
maximum high value of all intervals in the subtrees. This value is updated
during insert and delete operations, and will be crucial for enabling efficient
determination of overlap with some interval in the tree.

type_synonym 0a ivl_tree = (0a ivl � 0a) tree

max_hi :: 0a ivl_tree) 0a

max_hi hi = ?
max_hi h_; (_; m); _i = m

If the max_hi value of every node in a tree agrees with max3

5.5 Interval Trees 71

inv_max_hi :: 0a ivl_tree) bool

inv_max_hi hi = True
inv_max_hi hl ; (a ; m); ri
= (m = max3 a (max_hi l) (max_hi r) ^ inv_max_hi l ^

inv_max_hi r)

max3 :: 0a ivl) 0a) 0a) 0a

max3 a m n = max (high a) (max m n)

it follows by induction that max_hi is the maximum value of high in the tree
and comes from some node in the tree:

Lemma 5.1. inv_max_hi t ^ a 2 set_tree t �! high a � max_hi t

Lemma 5.2. inv_max_hi t ^ t 6= hi �!
(9 a2set_tree t : high a = max_hi t)

5.5.4 Implementing Sets of Intervals via Interval Trees

Interval trees can implement sets of intervals via unbalanced BSTs as in Sec-
tion 5.2. Of course empty = hi. Function isin was already defined in Sec-
tion 5.5.1 Insertion and deletion are also very close to the versions in Sec-
tion 5.2, but the value of max_hi must be computed (by max3) for each new
node. We follow Section 4.4 and introduce a smart constructor node for that
purpose and replace hl ; a ; ri by node l a r (on the right-hand side):

node :: 0a ivl_tree) 0a ivl) 0a ivl_tree) 0a ivl_tree

node l a r = hl ; (a ; max3 a (max_hi l) (max_hi r)); ri

insert :: 0a ivl) 0a ivl_tree) 0a ivl_tree

insert x hi = hhi; (x ; high x); hii
insert x hl ; (a ; m); ri = (case cmp x a of

LT) node (insert x l) a r j
EQ) hl ; (a ; m); ri j
GT) node l a (insert x r))

split_min :: 0a ivl_tree) 0a ivl � 0a ivl_tree

split_min hl ; (a ; _); ri
= (if l = hi then (a ; r)

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Interval_Tree.html

72 5 Binary Search Trees

else let (x ; l 0) = split_min l in (x ; node l 0 a r))

delete :: 0a ivl) 0a ivl_tree) 0a ivl_tree

delete _ hi = hi
delete x hl ; (a ; _); ri
= (case cmp x a of

LT) node (delete x l) a r j
EQ) if r = hi then l else let (x ; y) = split_min r in node l x y j
GT) node l a (delete x r))

The correctness proofs for insertion and deletion cover two aspects. Func-
tional correctness and preservation of the invariant sorted � inorder (the
BST property) are proved exactly as in Section 5.3 for ordinary BSTs. Preser-
vation of the invariant inv_max_hi can be proved by a sequence of simple
inductive properties. In the end the main correctness properties are

sorted (inorder t) �! inorder (insert x t) = ins_list x (inorder t)

sorted (inorder t) �! inorder (delete x t) = del_list x (inorder t)

inv_max_hi t �! inv_max_hi (insert x t)

inv_max_hi t �! inv_max_hi (delete x t)

Defining invar t = (inv_max_hi t ^ sorted (inorder t)) we obtain the
following top-level correctness corollaries:

invar s �! set_tree (insert x s) = set_tree s [fxg
invar s �! set_tree (delete x s) = set_tree s � fxg
invar s �! invar (insert x s)

invar s �! invar (delete x s)

5.5.5 Searching for an Overlapping Interval

The added functionality of interval trees over ordinary BSTs is function search
that searches for an overlapping rather than identical interval:

search :: 0a ivl_tree) 0a ivl) bool

search hi _ = False
search hl ; (a ; _); ri x
= (if overlap x a then True

else if l 6= hi ^ low x � max_hi l then search l x else search r x)

5.5 Interval Trees 73

The following theorem expresses the correctness of search assuming the
same invariants as before; bst t would work just as well as sorted (inorder t).

Theorem 5.3. inv_max_hi t ^ sorted (inorder t) �! search t x =

has_overlap (set_tree t) x

Proof. The result is clear when t is hi. Now suppose t is in the form hl ; (a ;
m); ri, where m is the value of max_hi at root. If a overlaps with x, search
returns True as expected. Otherwise, there are two cases.

• If l 6= hi and low x � max_hi l, the search goes to the left child. If there
is an interval in the left child overlapping with x, then the search returns
True as expected. Otherwise, we show there is also no interval in the right
child overlapping with x. Since l 6= hi, Lemma 5.2 yields a node p in the
left child such that high p = max_hi l. Since low x � max_hi l, we have
low x � high p. Since p does not overlap with x, we must have high x <

low p. But then, for every interval rp in the right child, low p � low rp,
so that high x < low rp, which implies that rp does not overlap with x.

• Now we consider the case where either l = hi or max_hi l < low x. In
this case, the search goes to the right. We show there is no interval in the
left child that overlaps with x. This is clear if l = hi. Otherwise, for each
interval lp, we have high lp � max_hi l by Lemma 5.1, so that high lp
< low x, which means lp does not overlap with x.

ut

Exercise 5.4. Define a function that determines if a given point is in some
interval in a given interval tree. Starting with

in_ivl :: 0a) 0a ivl) bool

in_ivl x iv = (low iv � x ^ x � high iv)

write a recursive function

search1 :: 0a ivl_tree) 0a) bool

(without using search) such that search1 x t is True iff there is some interval
iv in t such that in_ivl x iv . Prove

inv_max_hi t ^ bst t �! search1 t x = (9 iv2set_tree t : in_ivl x iv)

5.5.6 Notes

While this section demonstrated how to augment an ordinary binary tree
with intervals, any of the balanced binary trees (such as red-black tree) can
be augmented in a similar manner. We leave this as exercises.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Interval_Tree.html

74 5 Binary Search Trees

Interval trees have many applications in computational geometry. A basic
example is as follows. Consider a set of rectangles whose sides are aligned to
the x and y-axes. We wish to efficiently determine whether any pair of rectan-
gles in the set intersect each other (i.e. sharing a point, including boundaries).
This can be done using a "sweep line" algorithm as follows. For each rectangle
[xl; xh]� [yl; yh], we create two events: insert interval [xl; xh] at y-coordinate
yl and delete interval [xl; xh] at y-coordinate yh. Perform the events, start-
ing from an empty interval tree, in ascending order of y-coordinates, with
insertion events performed before deletion events. At each insertion, check
whether the interval to be inserted overlaps with any of the existing intervals
in the tree. If yes, we have found an intersection between two rectangles. If no
overlap of intervals is detected throughout the process, then no pair of rect-
angles intersect. When using an interval tree based on a balanced binary tree,
the time complexity of this procedure is O(n lgn), where n is the number of
rectangles.

We refer to Cormen et al. [13, Section 14.3] for another exposition on inter-
val trees and their applications. Interval trees, together with the application
of finding rectangle intersection, have been formalized by Zhan [81].

6

Abstract Data Types

In the previous chapter we looked at a very specific example of an abstract
data type, namely sets. In this chapter we consider abstract data types in
general and in particular the model-oriented approach to the specification of
abstract data types. This will lead to a generic format for such specifications.

6.1 Abstract Data Types

Abstract data types (ADTs) can be summarized by the following slogan:

ADT = interface + specification

where the interface lists the operations supported by the ADT and the specifi-
cation describes the behaviour of these operations. For example, our set ADT
has the following interface:

empty :: 0s
insert :: 0a) 0s) 0s
delete :: 0a) 0s) 0s
isin :: 0s) 0a) bool

The purpose of an ADT is to be able to write applications based on this
ADT that will work with any implementation of the ADT. To this end one can
prove properties of the application that are solely based on the specification
of the ADT. That is, one can write generic algorithms and prove generic
correctness theorems about them in the context of the ADT specification.

6.2 Model-Oriented Specifications

We follow the model-oriented style of specification [35]. In that style, an ab-
stract type is specified by giving an abstract model for it. For simplicity we

76 6 Abstract Data Types

assume that each ADT describes one type of interest T. In the set interface
T is 0s. This type T must be specified by some existing HOL type A, the
abstract model. In the case of sets this is straightforward: the model for sets
is simply the HOL type 0a set. The motto is that T should behave like A. In
order to bridge the gap between the two types, the specification needs an

• abstraction function � :: T) A

that maps concrete values to their abstract counterparts. Moreover, in general
only some elements of T represent elements of A. For example, in the set
implementation in the previous chapter not all trees but only BSTs represent
sets. Thus the specification should also take into account an

• invariant invar :: T) bool

Note that the abstraction function and the invariant are not part of the in-
terface, but they are essential for specification and verification purposes.

As an example, the ADT of sets is shown in Figure 6.1 with suggestive
keywords and a fixed mnemonic naming schema for the labels in the speci-
fication. This is the template for ADTs that we follow throughout the book.

ADT Set =

interface
empty :: 0s
insert :: 0a) 0s) 0s
delete :: 0a) 0s) 0s
isin :: 0s) 0a) bool

abstraction set :: 0s) 0a set
invariant invar :: 0s) bool

specification
invar empty (empty-inv)
set empty = fg (empty)

invar s �! invar (insert x s) (insert-inv)
invar s �! set(insert x s) = set s [fxg (insert)

invar s �! invar (delete x s) (delete-inv)
invar s �! set (delete x s) = set s � fxg (delete)

invar s �! isin s x = (x 2 set s) (isin)

Fig. 6.1. ADT Set

We have intentionally refrained from showing the Isabelle formalization using
so-called locales and have opted for a more intuitive textual format that is
not Isabelle-specific, in accordance with the general philosophy of this book.

6.3 Maps 77

The actual Isabelle text can of course be found in the source files, and locales
are explained in a dedicated manual [5].

We conclude this section by explaining what the specification of an ar-
bitrary ADT looks like. We assume that for each function f of the interface
there is a corresponding function f A in the abstract model, i.e. defined on A.
For a uniform treatment we extend � and invar to arbitrary types by setting
� x = x and invar x = True for all types other than T. Each function f of
the interface gives rise to two properties in the specification: preservation of
the invariant and simulation of f A. The precondition is shared:

invar x 1 ^ : : : ^ invar xn �!
invar(f x 1 : : : xn) (f -inv)
�(f x 1 : : : xn) = f A (� x 1) : : : (� xn) (f)

To understand how the specification of ADT Set is the result of this uniform
schema one has to take two things into account:

• Precisely which abstract operations on type 0a set model the functions in
the interface of the ADT Set? This correspondence is implicit in the spec-
ification: empty is modeled by fg, insert is modeled by �x s : s [fxg,
delete is modeled by �x s : s � fxg and isin is modeled by �s x : x 2 s.

• Because of the artificial extension of � and invar the above uniform for-
mat often collapses to something simpler where some �’s and invar ’s
disappear.

6.3 Maps

An even more versatile data structure than sets are (efficient) maps from 0a to
0b. In fact, sets can be viewed as maps from 0a to bool. Conversely, many data
structures for sets also support maps, e.g. BSTs. Although, for simplicity, we
focus on sets in this book, the ADT of maps should at least be introduced. It
is shown in Figure 6.2. Type 0m is the type of maps from 0a to 0b. The ADT
Map is very similar to the ADT Set except that the abstraction function
lookup is also part of the interface: it abstracts a map to a function of type
0a) 0b option . This implies that the equations are between functions of that
type. We use the function update notation (see Section 1.3) to explain update
and delete : update is modeled by �m a b: m(a := b) and delete by �m a :
m(a := None).

78 6 Abstract Data Types

ADT Map =

interface
empty :: 0m
update :: 0a) 0b) 0m) 0m
delete :: 0a) 0m) 0m
lookup :: 0m) 0a) 0b option

abstraction lookup
invariant invar :: 0m) bool

specification
invar empty (empty-inv)
lookup empty = (�a : None) (empty)

invar m �! invar (update a b m) (update-inv)
invar m �! lookup (update a b m) = (lookup m)(a := Some b) (update)

invar m �! invar (delete a m) (delete-inv)
invar m �! lookup (delete a m) = (lookup m)(a := None) (delete)

Fig. 6.2. ADT Map

6.4 Implementing ADTs

An implementation of an ADT consists of definitions for all the functions in
the interface. If you want to verify the correctness of the implementation, you
also need to provide definitions for the abstraction function and the invariant.
The latter two need not be executable unless they also occur in the interface
and the implementation is meant to be executable. The abstraction function
need not be surjective. For example, implementations of the ADT Set will
normally only represent finite sets, e.g. by BSTs.

For Isabelle users: because ADTs are formalized as locales, an implemen-
tation of an ADT is an interpretation of the corresponding locale.

6.5 Exercises

Exercise 6.1. Modify the ADT Set specification by making isin the abstrac-
tion function (from 0s to 0a) bool). Follow the example of the ADT Map
specification.

Exercise 6.2. In the ADT Map specification, following the general schema,
there should be a property labeled (lookup), but it is missing. The reason is
that given the correct abstract model of lookup, the equation becomes triv-
ial: invar m �! lookup m a = lookup m a . Why is that, which function
models lookup?

6.5 Exercises 79

Exercise 6.3. Implement ADT Map via unbalanced BSTs (like Set in Chap-
ter 5) using augmented trees. Verify the implementation by proving all the
correctness properties in the specification of ADT Map directly, without any
detour via sorted lists as in Section 5.4.

7

2-3 Trees

This is the first in a series of chapters examining balanced search trees
where the height of the tree is logarithmic in its size and which can therefore
be searched in logarithmic time.

The most popular first example of balanced search trees are red-black
trees. We start with 2-3 trees, where nodes can have 2 or 3 children, because
red-black trees simulate 2-3 trees. We introduce red-black trees in the next
chapter. The type of 2-3 trees is similar to the binary trees but with an
additional constructor Node3:

datatype 0a tree23 =

Leaf j
Node2 (0a tree23) 0a (0a tree23) j
Node3 (0a tree23) 0a (0a tree23) 0a (0a tree23)

The familiar syntactic sugar is sprinkled on top:

hi � Leaf
hl ; a ; ri � Node2 l a r

hl ; a ; m ; b; ri � Node3 l a m b r

The size, height and the completeness of a 2-3 tree are defined by adding
an equation for Node3 to the corresponding definitions on binary trees:

jhl ; _; m ; _; rij = jl j + jm j + jr j + 1

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree23_Set.html

82 7 2-3 Trees

h hl ; _; m ; _; ri = max (h l) (max (h m) (h r)) + 1

complete hl ; _; m ; _; ri
= (h l = h m ^ h m = h r ^ complete l ^ complete m ^

complete r)

A trivial induction yields complete t �! 2h t � jt j + 1: thus all operations
on complete 2-3 trees have logarithmic complexity if they descend along a
single branch and take constant time per node. This is the case and we will
not discuss complexity in any more detail.

A nice property of 2-3 trees is that for every n there is a complete 2-3
tree of size n. As we will see below, completeness can be maintained under
insertion and deletion in logarithmic time.

Exercise 7.1. Define a function maxt :: nat) unit tree23 that creates the
tree with the largest number of nodes given the height of the tree. We use
type unit because we are not interested in the elements in the tree. Prove
jmaxt n j = (3n � 1) div 2 and that no tree of the given height can be larger:
jt j � (3h t � 1) div 2. Note that both subtraction and division on type nat
can be tedious to work with. You may want to prove the two properties as
corollaries of subtraction and division free properties. Alternatively, work with
real instead of nat by replacing div by =.

7.1 Implementation of ADT Set

The implementation will maintain the usual ordering invariant and complete-
ness. When we speak of a 2-3 tree we will implicitly assume these two invari-
ants now.

Searching a 2-3 tree is like searching a binary tree (see Section 5.2) but
with one more defining equation:

isin hl ; a ; m ; b; ri x
= (case cmp x a of LT) isin l x j EQ) True
j GT) case cmp x b of LT) isin m x j EQ) True

j GT) isin r x)

Insertion into a 2-3 tree must preserve the completeness invariant. Thus
recursive calls must report back to the caller if the child has “overflown”, i.e.
increased in height. Therefore insertion returns a result of type 0a upI :

7.1 Implementation of ADT Set 83

datatype 0a upI = TI (0a tree23) j OF (0a tree23) 0a (0a tree23)

This is the idea: If insertion into t returns

TI t 0 then t and t 0 should have the same height,
OF l x r then t and l and r should have the same height.

The insertion functions are shown in Figure 7.1. The actual work is per-
formed by the recursive function ins. The element to be inserted is propagated
down to a leaf, which causes an overflow of the leaf. If an overflow is returned
from a recursive call it can be absorbed into a Node2 but in a Node3 it causes
another overflow. At the root of the tree, function treeI converts values of
type 0a upI back into trees:

treeI :: 0a upI) 0a tree23

treeI (TI t) = t
treeI (OF l a r) = hl ; a ; ri

Deletion is dual. Recursive calls must report back to the caller if the child
has “underflown”, i.e. decreased in height. Therefore deletion returns a result
of type 0a upD :

datatype 0a upD = TD (0a tree23) j UF (0a tree23)

This is the idea: If deletion from t returns

TD t 0 then t and t 0 should have the same height,
UF t 0 then t should be one level higher than t 0.

The main deletion functions are shown in Figure 7.2. The actual work is
performed by the recursive function del. If the element to be deleted is in
a child, the result of a recursive call is reintegrated into the node via the
auxiliary functions nodeij from Figure 7.3 that create a node with i children
where child j is given as an 0a upD value. If the element to be deleted is in the
node itself, a replacement is obtained and deleted from a child via split_min.
At the root of the tree, values of type 0a upD are converted back into trees:

treeD :: 0a upD) 0a tree23

treeD (TD t) = t
treeD (UF t) = t

84 7 2-3 Trees

insert x t = treeI (ins x t)

ins :: 0a) 0a tree23) 0a upI

ins x hi = OF hi x hi

ins x hl ; a ; ri
= (case cmp x a of

LT) case ins x l of TI l 0) TI hl 0; a ; ri
j OF l1 b l2) TI hl1; b; l2; a ; ri

j EQ) TI hl ; a ; ri
j GT) case ins x r of TI r 0) TI hl ; a ; r 0i

j OF r1 b r2) TI hl ; a ; r1; b; r2i)
ins x hl ; a ; m ; b; ri
= (case cmp x a of

LT) case ins x l of TI l 0) TI hl 0; a ; m ; b; ri
j OF l1 c l2) OF hl1; c; l2i a hm ; b; ri

j EQ) TI hl ; a ; m ; b; ri
j GT) case cmp x b of

LT) case ins x m of TI m 0) TI hl ; a ; m 0; b; ri
j OF m1 c m2) OF hl ; a ; m1i c hm2; b; ri

j EQ) TI hl ; a ; m ; b; ri
j GT) case ins x r of TI r 0) TI hl ; a ; m ; b; r 0i

j OF r1 c r2) OF hl ; a ; mi b hr1; c; r2i)

Fig. 7.1. Insertion into 2-3 tree

7.2 Preservation of Completeness

As explained in Section 5.4, we do not go into the automatic functional cor-
rectness proofs but concentrate on invariant preservation. To express the re-
lationship between the height of a tree before and after insertion we define a
height function hI on 0a upI as follows:

hI (TI t) = h t
hI (OF l a r) = h l

The intuition is that hI is the height of the tree before insertion. A routine
induction proves

complete t �! complete (treeI (ins a t)) ^ hI (ins a t) = h t

which implies by definition that

complete t �! complete (insert a t)

7.2 Preservation of Completeness 85

delete x t = treeD (del x t)

del :: 0a) 0a tree23) 0a upD

del x hi = TD hi

del x hhi; a ; hii = (if x = a then UF hi else TD hhi; a ; hii)
del x hhi; a ; hi; b; hii
= TD (if x = a then hhi; b; hii

else if x = b then hhi; a ; hii else hhi; a ; hi; b; hii)
del x hl ; a ; ri
= (case cmp x a of LT) node21 (del x l) a r

j EQ) let (a 0; r 0) = split_min r in node22 l a 0 r 0

j GT) node22 l a (del x r))
del x hl ; a ; m ; b; ri
= (case cmp x a of LT) node31 (del x l) a m b r

j EQ) let (a 0; m 0) = split_min m in node32 l a 0 m 0 b r
j GT) case cmp x b of LT) node32 l a (del x m) b r

j EQ) let (b 0; r 0) = split_min r in node33 l a m b 0 r 0

j GT) node33 l a m b (del x r))

split_min :: 0a tree23) 0a � 0a upD

split_min hhi; a ; hii = (a ; UF hi)

split_min hhi; a ; hi; b; hii = (a ; TD hhi; b; hii)
split_min hl ; a ; ri = (let (x ; l 0) = split_min l in (x ; node21 l 0 a r))
split_min hl ; a ; m ; b; ri
= (let (x ; l 0) = split_min l in (x ; node31 l 0 a m b r))

Fig. 7.2. Deletion from 2-3 tree: main functions

The fact that deletion preserves completeness can be proved by a sequence
of small lemmas. To express the relationship between the height of a tree
before and after deletion we define a height function hD on 0a upD as follows:

hD (TD t) = h t
hD (UF t) = h t + 1

The intuition is that hD is the height of the tree before deletion. We now list a
sequence of properties that build on each other and culminate in completeness
preservation of delete :

complete r ^ complete (treeD l 0) ^ h r = hD l 0 �!
complete (treeD (node21 l 0 a r))

0 < h r �! hD (node21 l 0 a r) = max (hD l 0) (h r) + 1

86 7 2-3 Trees

node21 :: 0a upD) 0a) 0a tree23) 0a upD

node21 (TD t1) a t2 = TD ht1; a ; t2i
node21 (UF t1) a ht2; b; t3i = UF ht1; a ; t2; b; t3i
node21 (UF t1) a ht2; b; t3; c; t4i = TD hht1; a ; t2i; b; ht3; c; t4ii

node22 :: 0a tree23) 0a) 0a upD) 0a upD

node22 t1 a (TD t2) = TD ht1; a ; t2i
node22 ht1; b; t2i a (UF t3) = UF ht1; b; t2; a ; t3i
node22 ht1; b; t2; c; t3i a (UF t4) = TD hht1; b; t2i; c; ht3; a ; t4ii

node31 :: 0a upD) 0a) 0a tree23) 0a) 0a tree23) 0a upD

node31 (TD t1) a t2 b t3 = TD ht1; a ; t2; b; t3i
node31 (UF t1) a ht2; b; t3i c t4 = TD hht1; a ; t2; b; t3i; c; t4i
node31 (UF t1) a ht2; b; t3; c; t4i d t5
= TD hht1; a ; t2i; b; ht3; c; t4i; d ; t5i

node32 :: 0a tree23) 0a) 0a upD) 0a) 0a tree23) 0a upD

node32 t1 a (TD t2) b t3 = TD ht1; a ; t2; b; t3i
node32 t1 a (UF t2) b ht3; c; t4i = TD ht1; a ; ht2; b; t3; c; t4ii
node32 t1 a (UF t2) b ht3; c; t4; d ; t5i
= TD ht1; a ; ht2; b; t3i; c; ht4; d ; t5ii

node33 :: 0a tree23) 0a) 0a tree23) 0a) 0a upD) 0a upD

node33 l a m b (TD r) = TD hl ; a ; m ; b; ri
node33 t1 a ht2; b; t3i c (UF t4) = TD ht1; a ; ht2; b; t3; c; t4ii
node33 t1 a ht2; b; t3; c; t4i d (UF t5)
= TD ht1; a ; ht2; b; t3i; c; ht4; d ; t5ii

Fig. 7.3. Deletion from 2-3 tree: auxiliary functions

split_min t = (x ; t 0) ^ 0 < h t ^ complete t �! hD t 0 = h t

split_min t = (x ; t 0) ^ complete t ^ 0 < h t �! complete (treeD t 0)

complete t �! hD (del x t) = h t

complete t �! complete (treeD (del x t))

complete t �! complete (delete x t)

For each property of node21 there are analogues properties for the other
nodeij functions which we omit.

7.3 Converting a List into a 2-3 Tree 87

7.3 Converting a List into a 2-3 Tree

The naive method of converting a whole list of elements into a 2-3 tree is to
insert them one by one starting from the empty tree. However, that takes time
�(n lgn). This holds for any kind of data structure where insertion takes time
proportional to lgn. In that case inserting n elements one by one takes time
proportional to lg 1+ � � �+lgn = lg(n!). Now n! � nn implies lg(n!) � n lgn.
On the other hand, nn � (n �1) �((n�1) �2) � � � (1 �n) = (n!)2 implies 1

2n lgn �
lg(n!). Thus lg(n!) 2 �(n lgn). We have intentionally proved a � property
because the O property is obvious but one might hope that lg 1 + � � � + lgn

has a lower order of growth than n lgn.
Luckily we can convert a whole list into a 2-3 tree in linear time. The

bottom-up algorithm is particularly intuitive. It repeatedly passes over on an
alternating list t1;e1;t2;e2;:::;tk of trees and elements, combining trees and
elements into new trees. Given elements a1;:::;an we start with the alternating
list hi;a1;hi;a2;:::;an;hi. On every pass over this list, we replace adjacent triples
t ;a ;t 0 by ht ; a ; t 0i, possibly creating a 3-node instead of a 2-node at the end
of the list. Once a single tree is left over we terminate.

We define this type of alternating (and non-empty) list as a new data type:

datatype 0a tree23s = T (0a tree23) j TTs (0a tree23) 0a (0a tree23s)

The following examples demonstrate the encoding of alternating lists as terms
of type 0a tree23s :

Alternating list: t1 t1;e1;t2 t1;e1;t2;e2;ts
Encoding: T t1 TTs t1 e1 (T t2) TTs t1 e1 (TTs t2 e2 ts)

We also need the following auxiliary functions:

len :: 0a tree23s) nat

len (T _) = 1

len (TTs _ _ ts) = len ts + 1

trees :: 0a tree23s) 0a tree23 set

trees (T t) = ftg
trees (TTs t _ ts) = ftg [trees ts

inorder2 :: 0a tree23s) 0a list

inorder2 (T t) = inorder t
inorder2 (TTs t a ts) = inorder t @ a # inorder2 ts

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree23_of_List.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree23_of_List.html

88 7 2-3 Trees

Repeatedly passing over the alternating list until only a single tree remains
is expressed by the following functions:

join_all :: 0a tree23s) 0a tree23

join_all (T t) = t
join_all ts = join_all (join_adj ts)

join_adj :: 0a tree23s) 0a tree23s

join_adj (TTs t1 a (T t2)) = T ht1; a ; t2i
join_adj (TTs t1 a (TTs t2 b (T t3))) = T ht1; a ; t2; b; t3i
join_adj (TTs t1 a (TTs t2 b ts)) = TTs ht1; a ; t2i b (join_adj ts)

Note that join_adj is not and does not need to be defined on single trees.
We express this precondition with an abbreviation:

not_T ts � 8 t : ts 6= T t

Also note that join_all terminates only because join_adj shortens the list:

not_T ts �! len (join_adj ts) < len ts

In fact, it reduces the length at least by a factor of 2:

not_T ts �! len (join_adj ts) � len ts div 2 (7.1)

The whole process starts with a list of alternating leaves and elements:

tree23_of_list :: 0a list) 0a tree23

tree23_of_list as = join_all (leaves as)

leaves :: 0a list) 0a tree23s

leaves [] = T hi
leaves (a # as) = TTs hi a (leaves as)

7.3.1 Functional Correctness

Functional correctness is easily established. The inorder and the completeness
properties are proved independently by the following inductive lemmas:

not_T ts �! inorder2 (join_adj ts) = inorder2 ts

inorder (join_all ts) = inorder2 ts

inorder (tree23_of_list as) = as

7.3 Converting a List into a 2-3 Tree 89

(8 t2trees ts : complete t ^ h t = n) ^ not_T ts �!
(8 t2trees (join_adj ts): complete t ^ h t = n + 1)

(8 t2trees ts : complete t ^ h t = n) �! complete (join_all ts)

t 2 trees (leaves as) �! complete t ^ h t = 0

complete (tree23_of_list as)

7.3.2 Running Time Analysis

Why does the conversion take linear time? Because the first pass over an
alternating list of length n takes n steps, the next pass n=2 steps, the next
pass n=4 steps, etc, and this sums up to 2n. The canonical time functions for
the formal proof are shown in Appendix B.3. The following upper bound is
easily proved by induction on the computation of join_adj :

not_T ts �! Tjoin_adj ts � len ts div 2 (7.2)

An upper bound Tjoin_all ts � 2 � len ts follows by induction on the compu-
tation of join_adj. We focus on the induction step:

Tjoin_all ts
= Tjoin_adj ts + Tjoin_all (join_adj ts) + 1

� len ts div 2 + 2 � len (join_adj ts) + 1 using (7.2) and IH
� len ts div 2 + 2 � (len ts div 2) + 1 by (7.1)
� 2 � len ts because 1 � len ts

Now it is routine to derive

Ttree23_of_list as � 3 � jas j + 4

Bibliographic Remarks

The invention of 2-3 trees is credited to Hopcroft in 1970 [13, p. 337]. Equa-
tional definitions were given by Hoffmann and O’Donnell [29] (only insertion)
and Reade [66]. Our formalisation is based on the teaching material by Tur-
bak [74] and the article by Hinze [28].

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tree23_of_List.html

8

Red-Black Trees

Red-black trees are a popular implementation technique for BSTs: the code is
simpler than for 2-3 trees but guarantees logarithmic height too. The nodes
are colored either red or black. Abstractly, red-black trees encode 2-3-4 trees
where nodes have between 2 and 4 children. Each 2-3-4 node is encoded by a
group of between 2 and 4 colored binary nodes as follows:

hi � hi
hA;a ;Bi � hA;a ;Bi

hA;a ;B ;b;C i � hhA;a ;Bi;b;C i or hA;a ;hB ;b;C ii
hA;a ;B ;b;C ;c;Di � hhA;a ;Bi;b;hC ;c;Dii

Color expresses grouping: a black node is the root of 2-3-4 node, a red node is
part of a bigger 2-3-4 node. Thus a red-black tree needs to satisfy the following
properties or invariants:

1. The root is black.
2. Every hi is considered black.
3. If a node is red, its children are black.
4. All paths from a node to a leaf have the same number of black nodes.

The final property expresses that the corresponding 2-3-4 tree is complete.
The last two properties imply that the tree has logarithmic height (see below).

We implement red-black trees as binary trees augmented (see Section 4.4)
with a colour tag:

datatype color = Red j Black

type_synonym 0a rbt = (0a � color) tree

Some new syntactic sugar is sprinkled on top:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/RBT_Set.html

92 8 Red-Black Trees

R l a r � hl ; (a ; Red); ri
B l a r � hl ; (a ; Black); ri

The following functions get and set the color of a node:

color :: 0a rbt) color

color hi = Black
color h_; (_; c); _i = c

paint :: color) 0a rbt) 0a rbt

paint _ hi = hi
paint c hl ; (a ; _); ri = hl ; (a ; c); ri

The definition of color builds in the property that all leaves are black.

8.1 Invariants

The above informal description of the red-black tree invariants is formalized
as the predicate rbt which (for reasons of modularity) is split into a color and
a height invariant invc and invh :

rbt :: 0a rbt) bool

rbt t = (invc t ^ invh t ^ color t = Black)

The color invariant expresses that red nodes must have black children:

invc :: 0a rbt) bool

invc hi = True
invc hl ; (_; c); ri
= ((c = Red �! color l = Black ^ color r = Black) ^

(invc l ^ invc r))

The height invariant expresses (via the black height bh) that all paths
from the root to a leaf have the same number of black nodes:

8.2 Implementation of ADT Set 93

invh :: 0a rbt) bool

invh hi = True
invh hl ; (_; _); ri = (bh l = bh r ^ invh l ^ invh r)

bh :: 0a rbt) nat

bh hi = 0

bh hl ; (_; c); _i = (if c = Black then bh l + 1 else bh l)

Note that although bh traverses only the left spine of the tree, the fact that
invh traverses the complete tree ensures that all paths from the root to a leaf
are considered. (See Exercise 8.2)

The split of the invariant into invc and invh improves modularity: fre-
quently one can prove preservation of invc and invh separately, which fa-
cilitates proof search. For compactness we will mostly present the combined
invariance properties.

8.1.1 Logarithmic Height

In a red-black tree, i.e. rbt t, every path from the root to a leaf has the same
number of black nodes, and no such path has two red nodes in a row. Thus
each leaf is at most twice as deep as any other leaf, and therefore h t � 2 �
lg jt j1. The detailed proof starts with the key inductive relationship between
height and black height

invc t ^ invh t �!
h t � 2 � bh t + (if color t = Black then 0 else 1)

which has the easy corollary rbt t �! h t = 2 � bh t. Together with the easy
inductive property

invc t ^ invh t �! 2bh t � jt j1
this implies 2h t = 2 � 2bh t � jt j1 and thus h t � 2 � lg jt j1 if rbt t.

8.2 Implementation of ADT Set

We implement sets by red-black trees that are also BSTs. As usual, we only
discuss the proofs of preservation of the rbt invariant.

Function isin is implemented as for all augmented BSTs (see Section 5.5.1).

94 8 Red-Black Trees

insert x t = paint Black (ins x t)

ins :: 0a) 0a rbt) 0a rbt

ins x hi = R hi x hi

ins x (B l a r) = (case cmp x a of
LT) baliL (ins x l) a r j

EQ) B l a r j

GT) baliR l a (ins x r))
ins x (R l a r) = (case cmp x a of

LT) R (ins x l) a r j

EQ) R l a r j

GT) R l a (ins x r))

baliL :: 0a rbt) 0a) 0a rbt) 0a rbt

baliL (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4)
baliL (R t1 a (R t2 b t3)) c t4 = R (B t1 a t2) b (B t3 c t4)
baliL t1 a t2 = B t1 a t2

baliR :: 0a rbt) 0a) 0a rbt) 0a rbt

baliR t1 a (R t2 b (R t3 c t4)) = R (B t1 a t2) b (B t3 c t4)
baliR t1 a (R (R t2 b t3) c t4) = R (B t1 a t2) b (B t3 c t4)
baliR t1 a t2 = B t1 a t2

Fig. 8.1. Insertion into red-black tree

8.2.1 Insertion

Insertion is shown in Figure 8.1. The workhorse is function ins. It descends
to the leaf where the element is inserted and it adjusts the colors on the
way back up. The adjustment is performed by baliL/baliR. They combine
arguments l a r into a tree. If there is a red-red conflict in l/r, they rebalance
and replace it by red-black. Inserting into a red node needs no immediate
balancing because that will happen at the black node above it:

ins 1 (B (R hi 0 hi) 2 (R hi 3 hi))
= baliL (ins 1 (R hi 0 hi)) 2 (R hi 3 hi)
= baliL (R hi 0 (ins 1 hi)) 2 (R hi 3 hi)
= baliL (R hi 0 (R hi 1 hi)) 2 (R hi 3 hi)
= R (B hi 0 hi) 1 (B hi 2 (R hi 3 hi))

Passing a red node up means an overflow occurred (as in 2-3 trees) that needs
to be dealt with further up. At the latest at the very top where insert turns
red into black.

8.2 Implementation of ADT Set 95

Function ins preserves invh but not invc: it may return a tree with a red
root node (see example above). However, once the root node is colored black,
everything is fine again. Thus we introduce the weaker invariant invc2 as an
abbreviation:

invc2 t � invc (paint Black t)

It is easy to prove that baliL and baliR preserve invh and upgrade from
invc2 to invc:

invh l ^ invh r ^ invc2 l ^ invc r ^ bh l = bh r �!
invc (baliL l a r) ^ invh (baliL l a r) ^ bh (baliL l a r) = bh l + 1

invh l ^ invh r ^ invc l ^ invc2 r ^ bh l = bh r �!
invc (baliR l a r) ^ invh (baliR l a r) ^ bh (baliR l a r) = bh l + 1

Another easy induction yields

invc t ^ invh t �!
invc2 (ins x t) ^ (color t = Black �! invc (ins x t)) ^
invh (ins x t) ^ bh (ins x t) = bh t

The corollary rbt t �! rbt (insert x t) is immediate.

8.2.2 Deletion

Deletion from a red-black tree is shown in Figure 8.2. It follows the deletion-
by-replacing approach (Section 5.2.1). The tricky bit is how to maintain the
invariants. As before, intermediate trees may only satisfy the weaker invariant
invc2. Functions del and split_min decrease the black height of a tree with a
black root node and leave the black height unchanged otherwise. To see that
this makes sense, consider deletion from a singleton black or red node. The
case that the element to be removed is not in the black tree can be dealt with
by coloring the root node red. These are the precise input/output relations:

Lemma 8.1. split_min t = (x ; t 0) ^ t 6= hi ^ invh t ^ invc t �!
invh t 0 ^ (color t = Red �! bh t 0 = bh t ^ invc t 0) ^
(color t = Black �! bh t 0 = bh t � 1 ^ invc2 t 0)

Lemma 8.2. invh t ^ invc t ^ t 0 = del x t �!
invh t 0 ^ (color t = Red �! bh t 0 = bh t ^ invc t 0) ^
(color t = Black �! bh t 0 = bh t � 1 ^ invc2 t 0)

It is easy to see that the del-Lemma implies correctness of delete :

Corollary 8.3. rbt t �! rbt (delete x t)

96 8 Red-Black Trees

delete x t = paint Black (del x t)

del :: 0a) 0a rbt) 0a rbt

del _ hi = hi

del x hl ; (a ; _); ri
= (case cmp x a of

LT) let l 0 = del x l
in if l 6= hi ^ color l = Black then baldL l 0 a r else R l 0 a r j

EQ) if r = hi then l
else let (a 0; r 0) = split_min r

in if color r = Black then baldR l a 0 r 0 else R l a 0 r 0 j

GT) let r 0 = del x r
in if r 6= hi ^ color r = Black then baldR l a r 0 else R l a r 0)

split_min :: 0a rbt) 0a � 0a rbt

split_min hl ; (a ; _); ri
= (if l = hi then (a ; r)

else let (x ; l 0) = split_min l
in (x ; if color l = Black then baldL l 0 a r else R l 0 a r))

baldL :: 0a rbt) 0a) 0a rbt) 0a rbt

baldL (R t1 a t2) b t3 = R (B t1 a t2) b t3
baldL t1 a (B t2 b t3) = baliR t1 a (R t2 b t3)
baldL t1 a (R (B t2 b t3) c t4) = R (B t1 a t2) b (baliR t3 c (paint Red t4))
baldL t1 a t2 = R t1 a t2

baldR :: 0a rbt) 0a) 0a rbt) 0a rbt

baldR t1 a (R t2 b t3) = R t1 a (B t2 b t3)
baldR (B t1 a t2) b t3 = baliL (R t1 a t2) b t3
baldR (R t1 a (B t2 b t3)) c t4 = R (baliL (paint Red t1) a t2) b (B t3 c t4)
baldR t1 a t2 = R t1 a t2

Fig. 8.2. Deletion from red-black tree

The proofs of the two lemmas need the following precise characterizations
of baldL and baldR, the counterparts of baliL and baliR:

Lemma 8.4. invh l ^ invh r ^ bh l + 1 = bh r ^ invc2 l ^ invc r ^
t 0 = baldL l a r �!
invh t 0 ^ bh t 0 = bh r ^ invc2 t 0 ^ (color r = Black �! invc t 0)

Lemma 8.5. invh l ^ invh r ^ bh l = bh r + 1 ^ invc l ^ invc2 r ^
t 0 = baldR l a r �!
invh t 0 ^ bh t 0 = bh l ^ invc2 t 0 ^ (color l = Black �! invc t 0)

8.2 Implementation of ADT Set 97

The proofs of these lemmas are by case analyses over the defining equations
using the characteristic properties of baliL and baliR given above.

Proof. Lemma 8.2 is proved by induction on the computation of del x t . We
concentrate on the induction step where t = hl ; (a ; c); ri, and thus invh l,
invh r, bh l = bh r, invc l and invc r because invh t and invc t. Let t 0 =
del x t. We need to prove invh t 0 and

(R) c = Red �! bh t 0 = bh t ^ invc t 0

(B) c = Black �! bh t 0 = bh t � 1 ^ invc2 t 0.

Consider the case x < a. Then t 0 = baldL l 0 a r where l 0 = del x l. By IH we
have invh l 0, color l = Red �! bh l 0 = bh l ^ invc l 0 and color l = Black
�! bh l 0 = bh l � 1 ^ invc2 l 0. First we assume l 6= hi ^ color l = Black.
Therefore 0 < bh l and hence bh l 0 + 1 = bh r follows from bh l 0 = bh l �
1 and bh l = bh r. Thus all premises of Lemma 8.4 (where l = l 0) hold and
we obtain its conclusion: invh t 0 ^ bh t 0 = bh r ^ invc2 t 0 ^ (color r =

Black �! invc t 0). It remains to prove (R) and (B). If c = Red then bh t 0

= bh r = bh l = bh t and invc t implies color r = Black and thus invc t 0.
If c = Black then bh t 0 = bh r = bh l = bh t � 1 and invc2 t 0 follows from
Lemma 8.4. Now we consider the case : (l 6= hi ^ color l = Black). First
assume l = hi. Hence t = hhi; (a ; c); ri and t 0 = R hi a r. Thus invh t 0

follows from invh t. It remains to prove (R) and (B). If c = Red then bh t 0 =
0 = bh t and invc t implies color r = Black and thus invc t 0 because invc
r. If c = Black then bh t 0 = 0 = 1 � 1 = bh t � 1 and invc2 t 0 follows
from invc r . Now assume color l 6= Black. This implies c = Black because
of invc t . Hence t 0 = R l 0 a r and bh l 0 = bh l ^ invc l 0 (by IH). Therefore
invh t 0 = (invh l 0 ^ invh r ^ bh l 0 = bh r) — the first two propositions
have been derived above and the last proposition is easy: bh l 0 = bh l = bh r.
It remains to prove (B) because c = Black. Proposition (B) follows easily:
bh t 0 = bh l 0 = bh l = bh t � 1 and invc2 t 0 = (invc l 0 ^ invc r) where
both conjuncts have been derived above.

The case a < x is analogous and the case x = a is similar but simpler. ut

The proof of Lemma 8.1 is similar but simpler.

8.2.3 Deletion by Joining

The basic idea was exemplified in the context of ordinary BSTs in Sec-
tion 5.2.1. The code for red-black trees is shown in Figure 8.3: compared
to Figure 8.2, the EQ case of del has changed and join is new.

Invariant preservation is proved much like before except that instead of
split_min we now have join to take care of. The characteristic lemma:

98 8 Red-Black Trees

del :: 0a) 0a rbt) 0a rbt

del _ hi = hi

del x hl ; (a ; _); ri
= (case cmp x a of

LT) if l 6= hi ^ color l = Black then baldL (del x l) a r
else R (del x l) a r j

EQ) join l r j

GT) if r 6= hi ^ color r = Black then baldR l a (del x r)
else R l a (del x r))

join :: 0a rbt) 0a rbt) 0a rbt

join hi t = t
join t hi = t
join (R t1 a t2) (R t3 c t4)
= (case join t2 t3 of

R u2 b u3) R (R t1 a u2) b (R u3 c t4) j
t23) R t1 a (R t23 c t4)

join (B t1 a t2) (B t3 c t4)
= (case join t2 t3 of

R u2 b u3) R (B t1 a u2) b (B u3 c t4) j
t23) baldL t1 a (R t23 c t4)

join t1 (R t2 a t3) = R (join t1 t2) a t3 j
join (R t1 a t2) t3 = R t1 a (join t2 t3)

Fig. 8.3. Deletion from red-black tree by combining children

Lemma 8.6. invh l ^ invh r ^ bh l = bh r ^ invc l ^ invc r ^
t 0 = join l r �!
invh t 0 ^ bh t 0 = bh l ^ invc2 t 0 ^
(color l = Black ^ color r = Black �! invc t 0)

8.3 Exercises

Exercise 8.1. Show that the logarithmic height of red-black trees is already
guaranteed by the color and height invariants:

invc t ^ invh t �! h t � 2 � lg jt j1 + 2

Exercise 8.2. We already discussed informally why the definition of invh
captures “all paths from the root to a leaf have the same number of black
nodes” although bh only traverses the left spine. This exercises formalizes
that discussion. The following function computes the set of black heights
(number of black nodes) of all paths:

8.3 Exercises 99

bhs :: 0a rbt) nat set

bhs hi = f0g
bhs hl ; (_; c); ri
= (let H = bhs l [bhs r in if c = Black then Suc ‘ H else H)

where the infix operator (‘) is predefined as f ‘ A = fy j 9 x2A: y = f xg.
Prove invh t ! bhs t = fbh tg. The direction invh t �! bhs t = fbh
tg should be easy, the other direction should need some lemmas.

Exercise 8.3. Following Section 7.3, define a linear time function rbt_of_list
:: 0a list) 0a rbt and prove both inorder (rbt_of_list as) = as and
rbt (rbt_of_list as).

Bibliographic Remarks

Red-Black trees were invented by Bayer [6] who called them “symmetric bi-
nary B-trees”. The red-black color convention was introduced by Guibas and
Sedgewick [23] who studied their properties in greater depth. The first func-
tional version of red-black trees (without deletion) is due to Okasaki [62] and
everybody follows his code. A functional version of deletion was first given
by Kahrs [36]1 and Section 8.2.3 is based on it. Germane [22] presents a
function for deletion by replacement that is quite different from the one in
Section 8.2.2. Our starting point were Isabelle proofs by Reiter and Krauss
(based on Kahrs). Other verifications of red-black trees are reported by Fil-
liâtre and Letouzey [19] (using their own deletion function) and Appel [4]
(based on Kahrs).

1 The code for deletion is not in the article but can be retrieved from this URL:
http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

9

AVL Trees

The AVL tree [2] (named after its inventors Adelson-Velsky and Landis) is
the granddaddy of efficient binary search trees. Its logarithmic height is main-
tained by rotating subtrees based on their height. For efficiency reasons the
height of each subtree is stored in its root node. That is, the underlying data
structure is a height-augmented tree (see Section 4.4):

type_synonym 0a tree_ht = (0a � nat) tree

Function ht extracts the height field and node is a smart constructor that
sets the height field:

ht :: 0a tree_ht) nat

ht hi = 0

ht h_; (_; n); _i = n

node :: 0a tree_ht) 0a) 0a tree_ht) 0a tree_ht

node l a r = hl ; (a ; max (ht l) (ht r) + 1); ri

An AVL tree is a tree that satisfies the AVL invariant: the height of the
left and right child of any node differ by at most 1

avl :: 0a tree_ht) bool

avl hi = True
avl hl ; (_; n); ri
= (jint (h l) � int (h r)j � 1 ^

n = max (h l) (h r) + 1 ^ avl l ^ avl r)

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/AVL_Set.html

102 9 AVL Trees

and the height field contains the correct value. The conversion function int ::

nat) int is required because on natural numbers 0 � n = 0.

9.1 Logarithmic Height

AVL trees have logarithmic height. The key insight for the proof is that M n,
the minimal number of leaves of an AVL tree of height n, satisfies the re-
currence relation M (n + 2) = M (n + 1) + M n. Instead of formalizing
this function M we prove directly that an AVL tree of height n has at least
fib (n + 2) leaves where fib is the Fibonacci function:

fib :: nat) nat

fib 0 = 0

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n

Lemma 9.1. avl t �! fib (h t + 2) � jt j1
Proof. The proof is by induction on t. We focus on the induction step t = hl ;
(a ; n); ri and assume avl t. Thus the IHs reduce to fib (h l + 2) � jl j1 and
fib (h r + 2) � jr j1. We prove fib (max (h l) (h r) + 3) � jl j1 + jr j1, from
which avl t �! fib (h t + 2) � jt j1 follows directly. There are two cases. We
focus on h l � h r, h l < h r is dual.

fib (max (h l) (h r) + 3) = fib (h l + 3)

= fib (h l + 2) + fib (h l + 1)

� jl j1 + fib (h l + 1) by fib (h l + 2) � jl j1
� jl j1 + jr j1 by fib (h r + 2) � jr j1

The last step is justified because h l + 1 � h r + 2 (which follows from
avl t) and fib is monotone. ut

Now we prove a well-known exponential lower bound for fib where ' � (1

+
p
5) = 2:

Lemma 9.2. 'n � fib (n + 2)

Proof. The proof is by induction on n by fib computation induction. The
case n = 0 is trivial and the case n = 1 is easy. Now consider the induction
step:

9.2 Implementation of ADT Set 103

fib (n + 2 + 2) = fib (n + 2 + 1) + fib (n + 2)

� 'n + 1 + 'n by IHs
= (' + 1) � 'n

= 'n + 2 because ' + 1 = '2 ut
Combining the two lemmas yields avl t �! 'h t � jt j1 and thus

Corollary 9.3. avl t �! h t � 1 = lg ' � lg jt j1
That is, the height of an AVL tree is at most 1 = lg ' � 1:44 times worse
than the optimal lg jt j1.

9.2 Implementation of ADT Set

9.2.1 Insertion

Insertion follows the standard approach: insert the element as usual and
reestablish the AVL invariant on the way back up.

insert :: 0a) 0a tree_ht) 0a tree_ht

insert x hi = hhi; (x ; 1); hii
insert x hl ; (a ; n); ri = (case cmp x a of

LT) balL (insert x l) a r j
EQ) hl ; (a ; n); ri j
GT) balR l a (insert x r))

Functions balL/balR readjust the tree after an insertion into the left/right
child. The AVL invariant has been lost if the difference in height has become 2
— it cannot become more because the height can only increase by 1. Consider
the definition of balL in Figure 9.1 (balR in Figure 9.2 is dual). If the AVL
invariant has not been lost, i.e. if ht AB 6= ht C + 2, then we can just return
the AVL tree node AB c C. But if ht AB = ht C + 2, we need to “rotate”
the subtrees suitably. Clearly AB must be of the form hA; (a ; _); Bi. There
are two cases, which are illustrated in Figure 9.1. Rectangles denote trees.
Rectangles of the same height denote trees of the same height. Rectangles
with a +1 denote the additional level due to insertion of the new element.

If ht B � ht A then balL performs what is known as a single rotation.
If ht A < ht B then B must be of the form hB1; (b; _); B2i (where

either B1 or B2 has increased in height) and balL performs what is known as
a double rotation.

It is easy to check that in both cases the tree on the right satisfies the
AVL invariant.

104 9 AVL Trees

balL :: 0a tree_ht) 0a) 0a tree_ht) 0a tree_ht

balL AB c C
= (if ht AB = ht C + 2

then case AB of
hA; (a ; x); Bi)

if ht B � ht A then node A a (node B c C)

else case B of
hB1; (b; _); B2i) node (node A a B1) b (node B2 c C)

else node AB c C)

Single rotation:

c

a

A B

C

+1

balL
�! a

A

c

B C+1

Double rotation:

c

a

A

b

B1 B2

C

+1 +1

balL
�! b

a

A
B1

c

B2

C
+1 +1

Fig. 9.1. Function balL

9.2 Implementation of ADT Set 105

balR :: 0a tree_ht) 0a) 0a tree_ht) 0a tree_ht

balR A a BC
= (if ht BC = ht A + 2

then case BC of
hB ; (c; x); C i)

if ht B � ht C then node (node A a B) c C
else case B of

hB1; (b; _); B2i) node (node A a B1) b (node B2 c C)

else node A a BC)

Fig. 9.2. Function balR

Preservation of avl by insert cannot be proved in isolation but needs to
be proved simultaneously with how insert changes the height (because avl
depends on the height and insert requires avl for correct behaviour):

Theorem 9.4. avl t �! avl (insert x t) ^ h (insert x t) 2 fh t ; h t + 1g
The proof is by induction on t followed by a complete case analysis (which
Isabelle automates).

9.2.2 Deletion

delete :: 0a) 0a tree_ht) 0a tree_ht

delete _ hi = hi

delete x hl ; (a ; _); ri
= (case cmp x a of

LT) balR (delete x l) a r j

EQ) if l = hi then r else let (l 0; a 0) = split_max l in balR l 0 a 0 r j

GT) balL l a (delete x r))

split_max :: 0a tree_ht) 0a tree_ht � 0a

split_max hl ; (a ; _); ri
= (if r = hi then (l ; a)

else let (r 0; a 0) = split_max r in (balL l a r 0; a 0))

Fig. 9.3. Deletion from AVL tree

Figure 9.3 shows deletion-by-replacing (see 5.2.1). The recursive calls are
dual to insertion: in terms of the difference in height, deletion of some element

106 9 AVL Trees

from one child is the same as insertion of some element into the other child.
Thus functions balR/balL can again be employed to restore the invariant.

An element is deleted from a node by replacing it with the maximal el-
ement of the left child (the minimal element of the right child would work
just as well). Function split_max performs that extraction and uses balL to
restore the invariant after splitting an element off the right child.

The fact that balR/balL can be reused for deletion can be illustrated by
drawing the corresponding rotation diagrams. We look at how the code for
balL behaves when an element has been deleted from C. Dashed rectangles
indicate a single additional level that may or may not be there. The label -1
indicates that the level has disappeared due to deletion.

Single rotation in balL after deletion in C :

c

a

A
B

C

-1

balL�! a

A

c

B C

Double rotation in balL after deletion in C :

c

a

A

b

B1 B2

C

-1

balL�! b

a

A
B1

c

B2
C

At least one of B1 and B2 must have the same height as A.
Preservation of avl by delete can be proved in the same manner as for

insert but we provide more of the details (partly because our Isabelle proof
is less automatic). The following lemmas express that the auxiliary functions
preserve avl :

avl l ^ avl r ^ h r � 1 � h l ^ h l � h r + 2 �! avl (balL l a r)

9.3 Exercises 107

avl l ^ avl r ^ h l � 1 � h r ^ h r � h l + 2 �! avl (balR l a r)

avl t ^ t 6= hi �!
avl (fst (split_max t)) ^
h t 2 fh (fst (split_max t)); h (fst (split_max t)) + 1g

The first two are proved by the obvious cases analyses, the last one also
requires induction.

As for insert, preservation of avl by delete needs to be proved simultane-
ously with how delete changes the height:

Theorem 9.5. avl t ^ t 0 = delete x t �! avl t 0 ^ h t 2 fh t 0; h t 0 + 1g
Proof. The proof is by induction on t followed by the case analyses dictated
by the code for delete. We sketch the induction step. Let t = hl ; (a ; n); ri
and t 0 = delete x t and assume the IHs and avl t. The claim avl t 0 follows
from the preservation of avl by balL, balR and split_max as shown above.
The claim h t 2 fh t 0; h t 0 + 1g follows directly from the definitions of balL
and balR. ut

9.3 Exercises

Exercise 9.1. The logarithmic height of AVL trees can be proved directly.
Prove

avl t ^ h t = n �! 2n div 2 � jt j1
by fib computation induction on n. This implies avl t �! h t � 2 � lg jt j1.
Exercise 9.2. Fibonacci trees are defined in analogy to Fibonacci numbers:

fibt :: nat) unit tree

fibt 0 = hi
fibt 1 = hhi; (); hii
fibt (n + 2) = hfibt (n + 1); (); fibt ni

We are only interested in the shape of these trees. Therefore the nodes just
contain dummy unit values (). Hence we need to define the AVL invariant
again for trees without annotations:

avl0 :: 0a tree) bool

avl0 hi = True
avl0 hl ; _; ri = (jint (h l) � int (h r)j � 1 ^ avl0 l ^ avl0 r)

Prove the following properties of Fibonacci trees:

avl0 (fibt n) jfibt n j1 = fib (n + 2)

108 9 AVL Trees

Conclude that the Fibonacci trees are minimal (w.r.t. their size) among all
AVL trees of a given height:

avl t �! jfibt (h t)j1 � jt j1
Exercise 9.3. Show that every almost complete tree is an AVL tree:

acomplete t �! avl0 t

As in the previous exercise we consider trees without height annotations.

Exercise 9.4. Generalize AVL trees to height-balanced trees where the
condition

jint (h l) � int (h r)j � 1

in the invariant is replaced by

jint (h l) � int (h r)j � m

where m � 1 is some fixed integer. Modify the invariant and the insertion
and deletion functions and prove that the latter fulfill the same correctness
theorems as before. You do not need to prove the logarithmic height of height-
balanced trees.

Exercise 9.5. Following Section 7.3, define a linear-time function avl_of_list
:: 0a list) 0a tree_ht and prove both inorder (avl_of_list as) = as and
avl (avl_of_list as).

9.4 An Optimization

Instead of recording the height of the tree in each node, it suffices to record
the balance factor, i.e. the difference in height of its two children. Rather
than the three integers -1, 0 and 1 we utilize a new data type:

datatype bal = Lh j Bal j Rh

type_synonym 0a tree_bal = (0a � bal) tree

The names Lh and Rh stand for “left-heavy” and “right-heavy”. The AVL
invariant for these trees reflect these names:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/AVL_Bal_Set.html

9.4 An Optimization 109

avl :: 0a tree_bal) bool

avl hi = True
avl hl ; (_; b); ri = ((case b of

Lh) h l = h r + 1 j
Bal) h r = h l j
Rh) h r = h l + 1) ^

avl l ^ avl r)

The code for insertion (and deletion) is similar to the height-based version.
The key difference is that the test if the AVL invariant as been lost cannot be
based on the height anymore. We need to detect if the tree has increased in
height upon insertion based on the balance factors. The key insight is that a
height increase is coupled with a change from Bal to Lh or Rh. Except when
we transition from hi to hhi; (a ; Bal); hii. This insight is encoded in the test
incr :

is_bal :: 0a tree_bal) bool

is_bal h_; (_; b); _i = (b = Bal)

incr :: 0a tree_bal) 0b tree_bal) bool

incr t t 0 = (t = hi _ is_bal t ^ : is_bal t 0)

The test for a height increase compares the trees before and after insertion.
Therefore it has been pulled out of the balance functions into insertion:

insert :: 0a) 0a tree_bal) 0a tree_bal

insert x hi = hhi; (x ; Bal); hii
insert x hl ; (a ; b); ri
= (case cmp x a of

LT) let l 0 = insert x l
in if incr l l 0 then balL l 0 a b r else hl 0; (a ; b); ri j

EQ) hl ; (a ; b); ri j
GT) let r 0 = insert x r

in if incr r r 0 then balR l a b r 0 else hl ; (a ; b); r 0i)

The balance functions are shown in Figure 9.4. Function rot2 implements
double rotations. Function balL is called if the left child AB has increased
in height. If the tree was Lh then single or double rotations are necessary

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/AVL_Bal_Set.html

110 9 AVL Trees

balL :: 0a tree_bal) 0a) bal) 0a tree_bal) 0a tree_bal

balL AB c bc C
= (case bc of

Lh) case AB of
hA; (a ; Lh); Bi) hA; (a ; Bal); hB ; (c; Bal); C ii j

hA; (a ; Bal); Bi) hA; (a ; Rh); hB ; (c; Lh); C ii j

hA; (a ; Rh); Bi) rot2 A a B c C j

Bal) hAB ; (c; Lh); C i j

Rh) hAB ; (c; Bal); C i)

balR :: 0a tree_bal) 0a) bal) 0a tree_bal) 0a tree_bal

balR A a ba BC
= (case ba of

Lh) hA; (a ; Bal); BC i j

Bal) hA; (a ; Rh); BC i j

Rh) case BC of
hB ; (c; Lh); C i) rot2 A a B c C j

hB ; (c; Bal); C i) hhA; (a ; Rh); Bi; (c; Lh); C i j

hB ; (c; Rh); C i) hhA; (a ; Bal); Bi; (c; Bal); C i)

rot2 :: 0a tree_bal) 0a) 0a tree_bal) 0a) 0a tree_bal) 0a tree_bal

rot2 A a B c C
= (case B of

hB1; (b; bb); B2i)

let b1 = if bb = Rh then Lh else Bal ;
b2 = if bb = Lh then Rh else Bal

in hhA; (a ; b1); B1i; (b; Bal); hB2; (c; b2); C ii)

Fig. 9.4. Functions balL and balR

to restore balance. Otherwise we simply need to adjust the balance factors.
Function balR is dual to balL.

For deletion we need to test if the height has decreased and decr imple-
ments this test:

decr :: 0a tree_bal) 0b tree_bal) bool

decr t t 0 = (t 6= hi ^ (t 0 = hi _ : is_bal t ^ is_bal t 0))

The functions incr and decr are almost dual except that incr implicitly
assumes t 0 6= hi because insertion is guaranteed to return a Node. Thus we
could use decr instead of incr but not the other way around.

Deletion and split_max change in the same manner as insertion:

9.5 Exercises 111

delete :: 0a) 0a tree_bal) 0a tree_bal

delete _ hi = hi
delete x hl ; (a ; ba); ri
= (case cmp x a of

LT) let l 0 = delete x l
in if decr l l 0 then balR l 0 a ba r else hl 0; (a ; ba); ri

j EQ) if l = hi then r
else let (l 0; a 0) = split_max l

in if decr l l 0 then balR l 0 a 0 ba r
else hl 0; (a 0; ba); ri

j GT) let r 0 = delete x r
in if decr r r 0 then balL l a ba r 0 else hl ; (a ; ba); r 0i)

split_max :: 0a tree_bal) 0a tree_bal � 0a

split_max hl ; (a ; ba); ri
= (if r = hi then (l ; a)

else let (r 0; a 0) = split_max r ;
t 0 = if decr r r 0 then balL l a ba r 0 else hl ; (a ; ba); r 0i

in (t 0; a 0))

In the end we have the following correctness theorems:

Theorem 9.6. avl t ^ t 0 = insert x t �!
avl t 0 ^ h t 0 = h t + (if incr t t 0 then 1 else 0)

This theorem tells us not only that avl is preserved but also that incr indi-
cates correctly if the height has increased or not.

Similarly for deletion and decr :

Theorem 9.7. avl t ^ t 0 = delete x t �!
avl t 0 ^ h t = h t 0 + (if decr t t 0 then 1 else 0)

The proofs of both theorems follow the standard pattern of induction
followed by an exhaustive (automatic) cases analysis. The proof for delete
requires an analogous lemma for split_max :

split_max t = (t 0; a) ^ avl t ^ t 6= hi �!
avl t 0 ^ h t = h t 0 + (if decr t t 0 then 1 else 0)

9.5 Exercises

Exercise 9.6. We map type 0a tree_bal back to type (0a � nat) tree called
0a tree_ht in the beginning of the chapter:

112 9 AVL Trees

debal :: 0a tree_bal) (0a � nat) tree

debal hi = hi
debal hl ; (a ; _); ri = hdebal l ; (a ; max (h l) (h r) + 1); debal ri

Prove that the AVL property is preserved: avl t �! avl_ht (debal t) where
avl_ht is the avl predicate on type 0a tree_ht from the beginning of the
chapter.

Define a function debal2 of the same type that traverses the tree only once
and in particular does not use function h. Prove avl t �! debal2 t = debal t .

Exercise 9.7. To realize the full space savings potential of balance factors we
encode them directly into the node constructors and work with the following
special tree type:

datatype 0a tree4 = Leaf
j Lh (0a tree4) 0a (0a tree4)
j Bal (0a tree4) 0a (0a tree4)
j Rh (0a tree4) 0a (0a tree4)

On this type define the AVL invariant, insertion, deletion and all necessary
auxiliary functions. Prove theorems 9.6 and 9.7. Hint: modify the theory un-
derlying Section 9.4.

10

Beyond Insert and Delete: [, \ and �

So far we looked almost exclusively at insertion and deletion of single elements,
with the exception of the conversion of whole lists of elements into search
trees (see Section 7.3 and Exercises 8.3 and 9.5). This chapter is dedicated
to operations that combine two sets (implemented by search trees) by union,
intersection and difference. We denote set difference by � rather than n.

Let us focus on set union for a moment and assume that insertion into
a set of size s takes time proportional to lg s. Consider two sets A and B of
size m and n where m � n. The naive approach is to insert the elements
from one set one by one into the other set. This takes time proportional to
lgn+ � � �+lg(n+m�1) or lgm+ � � �+lg(m+n�1) depending on whether the
smaller set is inserted into the larger one or the other way around. Of course
the former sum is less than or equal to the latter sum. To estimate the growth
of lgn+ � � �+lg(n+m�1) = lg(n � � � (n+m�1)) we can easily generalize the
derivation of lg(n!) 2 �(n lgn) in the initial paragraph of Section 7.3. The
result is lg(n � � � (n+m� 1)) 2 �(m lgn). That is, inserting m elements into
an n element set one by one takes time �(m lgn).

There is a second, possibly naive sounding algorithm for computing the
union: flatten both trees to ordered lists (using function inorder2 from Exer-
cise 4.1), merge both lists and convert the resulting list back into a suitably
balanced search tree. All three steps take linear time. The last step is the only
slightly nontrivial one but has been dealt with before (see Section 7.3 and Ex-
ercises 8.3 and 9.5). This algorithm takes time O(m+n) which is significantly
better than O(m lgn) if m � n but significantly worse if m << n.

This chapter is concerned with a third approach that has the following
salient features:

• Union, intersection and difference take time O(m lg(n
m

+ 1))

• It works for a whole class of balanced trees, including AVL, red-black and
weight-balanced trees.

114 10 Beyond Insert and Delete: [, \ and �

• It is based on a single function for joining two balanced trees to form a
new balanced tree.

We call it the join approach. It is easily and efficiently parallelizable, a
property we will not explore here.

The join approach is at least as fast as the one-by-one approach: from
m+n � mn it follows that n

m
+1 � n (if m;n � 2). The join approach is also

at least as fast as the tree-to-list-to-tree approach because m+n = m(n
m

+1)

(if m � 1).

10.1 Specification of Union, Intersection and Difference

Before explaining the join approach we extend the ADT Set by three new
functions union, inter and diff. The specification in Figure 10.1 is self-
explanatory.

ADT Set2 = Set +

interface
union :: 0s) 0s) 0s
inter :: 0s) 0s) 0s
diff :: 0s) 0s) 0s

specification
invar s1 ^ invar s2 �! invar (union s1 s2) (union-inv)
invar s1 ^ invar s2 �! set (union s1 s2) = set s1 [set s2 (union)

invar s1 ^ invar s2 �! invar (inter s1 s2) (inter -inv)
invar s1 ^ invar s2 �! set (inter s1 s2) = set s1 \ set s2 (inter)

invar s1 ^ invar s2 �! invar (diff s1 s2) (diff -inv)
invar s1 ^ invar s2 �! set (diff s1 s2) = set s1 � set s2 (diff)

Fig. 10.1. ADT Set2

10.2 Just Join

Now we come to the heart of the matter, the definition of union, intersection
and difference in terms of a single function join. We promised that the al-
gorithms would be generic across a range of balanced trees. Thus we assume
that we operate on augmented trees of type (0a � 0b) tree where 0a is the
type of the elements and 0b is the balancing information (which we can ignore

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set_Specs.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set2_Join.html

10.2 Just Join 115

here). This enables us to formulate the algorithms via pattern-matching. A
more generic approach is the subject of Exercise 10.1.

The whole section is parameterized by the join function and an invariant:

join :: (0a � 0b) tree) 0a) (0a � 0b) tree) (0a � 0b) tree
inv :: (0a � 0b) tree) bool

Function inv is meant to take care of the balancedness property only, not
the BST property. Functions join and inv are specified with the help of the
standard tree functions set_tree and bst in Figure 10.2. With respect to the

set_tree (join l a r) = set_tree l [fag [set_tree r (10.1)

bst hl ; (a ; _); ri �! bst (join l a r) (10.2)

inv hi

inv l ^ inv r �! inv (join l a r) (10.3)

inv hl ; (_; _); ri �! inv l ^ inv r (10.4)

Fig. 10.2. Specification of join and inv

set of elements, join must behave like union. But it need only return a BST
if both trees are BSTs and the element a lies in between the elements of
the two trees, i.e. if bst hl ; (a ; _); ri. The structural invariant inv must be
preserved by formation and destruction of trees. Thus we can see join as a
smart constructor that builds a balanced tree.

To define union and friends we need a number of simple auxiliary functions
shown in Figure 10.3. Function split_min decomposes a tree into its leftmost
(minimal) element and the remaining tree; the remaining tree is reassembled
via join, thus preserving inv. Function join2 is reduced to join with the help
of split_min. Function split splits a BST w.r.t. a given element a into a triple
(l ; b; r) such that l contains the elements less than a, r contains the elements
greater than a, and b is true iff a was in the input tree.

Although insertion and deletion could be defined by means of union and
difference, we can define them directly from the auxiliary functions:

insert :: 0a) (0a � 0b) tree) (0a � 0b) tree

insert x t = (let (l ; b; r) = split t x in join l x r)

delete :: 0a) (0a � 0b) tree) (0a � 0b) tree

delete x t = (let (l ; b; r) = split t x in join2 l r)

The efficiency can be improved a little by taking the returned b into account.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set2_Join.html

116 10 Beyond Insert and Delete: [, \ and �

split_min :: (0a � 0b) tree) 0a � (0a � 0b) tree

split_min hl ; (a ; _); ri
= (if l = hi then (a ; r)

else let (m ; l 0) = split_min l in (m ; join l 0 a r))

join2 :: (0a � 0b) tree) (0a � 0b) tree) (0a � 0b) tree

join2 l r
= (if r = hi then l else let (m ; r 0) = split_min r in join l m r 0)

split :: (0a � 0b) tree) 0a) (0a � 0b) tree � bool � (0a � 0b) tree

split hi _ = (hi; False ; hi)
split hl ; (a ; _); ri x
= (case cmp x a of

LT) let (l1; b; l2) = split l x in (l1; b; join l2 a r) j
EQ) (l ; True ; r) j
GT) let (r1; b; r2) = split r x in (join l a r1; b; r2))

Fig. 10.3. Auxiliary functions

But we have bigger functions to fry: union, intersection and difference.
They are shown in Figure 10.4. All three are divide-and-conquer algorithms
that follow the same schema: both input trees are split at an element a (by
construction or explicitly), the algorithm is applied recursively to the two
trees of the elements below a and to the two trees of the elements above a,
and the two results are suitably joined.

10.2.1 Correctness

We need to prove that union, inter and diff satisfy the specification in Fig-
ure 10.1 where set = set_tree and invar t = inv t ^ bst t. That is, for each
function we show its set-theoretic property and preservation of inv and bst
using the assumptions in Figure 10.2. Most of the proofs in this section are
obvious and automatic inductions and we do not discuss them.

First we need to prove suitable properties of the auxiliary functions
split_min, join2 and split :

split_min t = (m ; t 0) ^ t 6= hi �!
m 2 set_tree t ^ set_tree t = fmg [set_tree t 0

split_min t = (m ; t 0) ^ bst t ^ t 6= hi �!
bst t 0 ^ (8 x2set_tree t 0: m < x)

split_min t = (m ; t 0) ^ inv t ^ t 6= hi �! inv t 0

10.2 Just Join 117

union :: (0a � 0b) tree) (0a � 0b) tree) (0a � 0b) tree

union hi t = t
union t hi = t
union hl1; (a ; _); r1i t2
= (let (l2; b2; r2) = split t2 a

in join (union l1 l2) a (union r1 r2))

inter :: (0a � 0b) tree) (0a � 0b) tree) (0a � 0b) tree

inter hi t = hi

inter t hi = hi

inter hl1; (a ; _); r1i t2
= (let (l2; b2; r2) = split t2 a ;

l 0 = inter l1 l2; r 0 = inter r1 r2
in if b2 then join l 0 a r 0 else join2 l 0 r 0)

diff :: (0a � 0b) tree) (0a � 0b) tree) (0a � 0b) tree

diff hi t = hi

diff t hi = t
diff t1 hl2; (a ; _); r2i
= (let (l1; b1; r1) = split t1 a

in join2 (diff l1 l2) (diff r1 r2))

Fig. 10.4. Union, intersection and difference

set_tree (join2 l r) = set_tree l [set_tree r (10.5)

bst l ^ bst r ^ (8 x2set_tree l : 8 y2set_tree r : x < y) �!
bst (join2 l r)

inv l ^ inv r �! inv (join2 l r)

split t x = (l ; b; r) ^ bst t �!
set_tree l = fa 2 set_tree t j a < xg ^
set_tree r = fa 2 set_tree t j x < ag ^
b = (x 2 set_tree t) ^ bst l ^ bst r (10.6)

split t x = (l ; b; r) ^ inv t �! inv l ^ inv r

The correctness properties of insert and delete are trivial consequences
and are not shown. We move on to union. Its correctness properties are con-
cretizations of the properties (union) and (union-inv) in Figure 10.1:

bst t2 �! set_tree (union t1 t2) = set_tree t1 [set_tree t2
bst t1 ^ bst t2 �! bst (union t1 t2)

inv t1 ^ inv t2 �! inv (union t1 t2)

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set2_Join.html

118 10 Beyond Insert and Delete: [, \ and �

All three union properties are proved by computation induction. The first
property follows easily from assumption (10.1) and (10.6). The assumption
bst t2 (but not bst t1) is required because t2 is split and (10.6) requires
bst. Preservation of bst follows from assumption (10.2) with the help of the
first union property and the preservation of bst by split. Preservation of inv
follows from assumptions (10.3) and (10.4) with the help of the preservation
of inv by split.

The correctness properties of inter look similar:

bst t1 ^ bst t2 �! set_tree (inter t1 t2) = set_tree t1 \ set_tree t2
bst t1 ^ bst t2 �! bst (inter t1 t2)

inv t1 ^ inv t2 �! inv (inter t1 t2)

The proof of the preservation properties are automatic but the proof of the
set_tree property is more involved than the corresponding proof for union
and we take a closer look at the induction. We focus on the case t1 = hl1; (a ;
_); r1i and t2 6= hi. Let L1 = set_tree l1 and R1 = set_tree r1. Let (l2;
b; r2) = split t2 a, L2 = set_tree l2, R2 = set_tree r2 and A = (if b then
fag else fg). The separation properties

a =2 L1 [R1 a =2 L2 [R2

L2 \ R2 = fg L1 \ R2 = fg L2 \ R1 = fg
follow from bst t1, bst t2 and (10.6). Now for the main proof:

set_tree t1 \ set_tree t2
= (L1 [R1 [fag) \ (L2 [R2 [A) by (10.6), bst t2
= L1 \ L2 [R1 \ R2 [A by the separation properties
= set_tree (inter t1 t2) by (10.1), (10.5), IHs, bst t1, bst t2, (10.6)

The correctness properties of diff follow the same pattern and their proofs
are similar to the proofs of the inter properties. This concludes the generic
join approach.

10.3 Joining Red-Black Trees

This section shows how to implement join efficiently on red-black trees. The
basic idea is simple: descend along the spine of the higher of the two trees
until reaching a subtree whose height is the same as the height of the lower
tree. With suitable changes this works for other balanced trees as well [9].
The function definitions are shown in Figure 10.5. Function join calls joinR
(descending along the right spine of l) if l is the higher tree, or calls joinL
(descending along the left spine of r) if r is the higher tree, or returns B l x r

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set2_Join_RBT.html

10.3 Joining Red-Black Trees 119

joinL :: 0a rbt) 0a) 0a rbt) 0a rbt

joinL l x r
= (if bh r � bh l then R l x r

else case r of
hl 0; (x 0; Red); r 0i) R (joinL l x l 0) x 0 r 0 j

hl 0; (x 0; Black); r 0i) baliL (joinL l x l 0) x 0 r 0)

joinR :: 0a rbt) 0a) 0a rbt) 0a rbt

joinR l x r
= (if bh l � bh r then R l x r

else case l of
hl 0; (x 0; Red); r 0i) R l 0 x 0 (joinR r 0 x r) j
hl 0; (x 0; Black); r 0i) baliR l 0 x 0 (joinR r 0 x r))

join :: 0a rbt) 0a) 0a rbt) 0a rbt

join l x r
= (if bh r < bh l then paint Black (joinR l x r)

else if bh l < bh r then paint Black (joinL l x r) else B l x r)

Fig. 10.5. Function join on red-black trees

otherwise. The running time is linear in the black height (and thus logarithmic
in the size) if we assume that the black height is stored in each node; our
implementation of red-black trees would have to be augmented accordingly.
Note that in joinR (and similarly in joinL) the comparison is not bh l = bh r
but bh l � bh r to simplify the proofs.

10.3.1 Correctness

We need to prove that join on red-black trees (and a suitable inv) satisfies its
specification in Figure 10.2. We start with properties of joinL; the properties
of function joinR are completely symmetric. These are the automatically
provable inductive properties:

invc l ^ invc r ^ invh l ^ invh r ^ bh l � bh r �!
invc2 (joinL l x r) ^
(bh l 6= bh r ^ color r = Black �! invc (joinL l x r)) ^
invh (joinL l x r) ^ bh (joinL l x r) = bh r
bh l � bh r �! set_tree (joinL l x r) = set_tree l [fxg [set_tree r
bst hl ; (a ; n); ri ^ bh l � bh r �! bst (joinL l a r)

Because joinL employs baliL from the chapter on red-black trees, the proof
of the first property makes use of the baliL property shown in Section 8.2.1.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Set2_Join_RBT.html

120 10 Beyond Insert and Delete: [, \ and �

We define the invariant inv required for the specification in Figure 10.2
as follows:

inv t = (invc t ^ inv h t)

Although weaker than rbt, it still guarantees logarithmic height (see Exer-
cise 8.1). Note that rbt itself does not work because it does not satisfy prop-
erty (10.4). The properties of join and inv are now easy consequences of the
joinL (and joinR) properties shown above.

10.4 Exercises

Exercise 10.1. Define an alternative version diff1 of diff where in the third
equation pattern matching is on t1 and t2 is split. Prove bst t1 ^ bst t2 �!
set_tree (diff1 t1 t2) = set_tree t1 � set_tree t2.

Exercise 10.2. Following the general idea of the join function for red-black
trees, define a join function for 2-3-trees. Start with two functions joinL,
joinR :: 0a tree23) 0a) 0a tree23) 0a upI and combine them into the
overall join function:

join :: 0a tree23) 0a) 0a tree23) 0a tree23

Prove the following correctness properties:

complete l ^ complete r �! complete (join l x r)

complete l ^ complete r �!
inorder (join l x r) = inorder l @ x # inorder r

The corresponding (and needed) properties of joinL and joinR are slightly
more involved.

Bibliographic Remarks

The join approach goes back to Adams [1]. Blelloch et al. [9] generalized
the approach from weight-balanced trees to AVL trees, red-black trees and
treaps. In particular they proved the O(m lg(n

m
+ 1)) bound for the work

(and an O(lgm lgn) bound for the span).

11

Arrays via Braun Trees

Braun trees are a subclass of almost complete trees. In this chapter we explore
their use as arrays and in Chapter 16 as priority queues.

11.1 Array

So far we have discussed sets (or maps) over some arbitrary linearly ordered
type. Now we specialize that linearly ordered type to nat to model arrays. In
principle we could model arrays as maps from a subset of natural numbers
to the array elements. Because arrays are contiguous, it is more appropriate
to model them as lists. The type 0a list comes with two array-like operations
(see Appendix A):

Indexing: xs ! n is the nth element of the list xs.
Updating: xs [n := x] is xs with the nth element replaced by x.

By convention, indexing starts with n = 0. If n � length xs then xs ! n and
xs [n := x] are underdefined: they are defined terms but we do not know what
their value is.

Note that operationally, indexing and updating take time linear in the
index, which may appear inappropriate for arrays. However, the type of lists
is only an abstract model that specifies the desired functional behaviour of
arrays but not their running time complexity.

The ADT of arrays is shown in Figure 11.1. Type 0ar is the type of ar-
rays, type 0a the type of elements in the arrays. The abstraction function list
abstracts arrays to lists. It would make perfect sense to include list in the
interface as well. In fact, our implementation below comes with a (reasonably
efficiently) executable definition of list.

The behaviour of lookup, update, size and array is specified in terms
of their counterparts on lists and requires that the invariant is preserved.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Array_Specs.html

122 11 Arrays via Braun Trees

ADT Array =

interface
lookup :: 0ar) nat) 0a
update :: nat) 0a) 0ar) 0ar
len :: 0ar) nat
array :: 0a list) 0ar

abstraction list :: 0ar) 0a list
invariant invar :: 0ar) bool

specification
invar ar ^ n < len ar �! lookup ar n = list ar ! n (lookup)
invar ar ^ n < len ar �! invar (update n x ar) (update-inv)
invar ar ^ n < len ar �! list (update n x ar) = (list ar)[n := x] (update)
invar ar �! len ar = jlist ar j (len)
invar (array xs) (array-inv)
list (array xs) = xs (array)

Fig. 11.1. ADT Array

What distinguishes the specifications of lookup and update from the standard
schema (see Chapter 6) is that they carry a size precondition because the
result of lookup and update is only specified if the index is less than the size
of the array.

11.2 Braun Trees

One can implement arrays by any one of the many search trees presented in
this book. Instead we take advantage of the fact that the keys are natural
numbers and implement arrays by so-called Braun trees which are almost
complete and thus have minimal height.

The basic idea is to index a node in a binary tree by the non-zero bit string
that leads from the root to that node in the following fashion. Starting from
the least significant bit and while we have not reached the leading 1 (which
is ignored), we examine the bits one by one. If the current bit is 0, descend
into the left child, otherwise into the right child. Instead of bit strings we
use the natural numbers � 1 that they represent. The Braun tree with nodes
indexed by 1–15 is shown in Figure 11.2. The numbers are the indexes and not
the elements stored in the nodes. For example, the index 14 is 0111 in binary
(least significant bit first). If you follow the path left-right-right corresponding
to 011 in Figure 11.2 you reach node 14.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Braun_Tree.html

11.2 Braun Trees 123

1

2

4

8 12

6

10 14

3

5

9 13

7

11 15

Fig. 11.2. Braun tree with nodes indexed by 1–15

A tree t is suitable for representing an array if the set of indexes of all
its nodes is the interval f1::jt jg. The following tree is unsuitable because the
node indexed by 2 is missing:

1

3

It turns out that the following invariant guarantees that a tree t contains
exactly the nodes indexed by 1, ..., jt j:

braun :: 0a tree) bool

braun hi = True
braun hl ; _; ri = ((jl j = jr j _ jl j = jr j + 1) ^ braun l ^ braun r)

The disjunction can alternatively be expresses as jr j � jl j � jr j + 1. We call
a tree a Braun tree iff it satisfies predicate braun.

Although we do not need or prove this here, it is interesting to note that
a tree that contains exactly the nodes indexed by 1, ..., jt j is a Braun tree.

Let us now prove the earlier claim that Braun trees are almost complete.
First, a lemma about the composition of almost complete trees:

Lemma 11.1.
acomplete l ^ acomplete r ^ jl j = jr j + 1 �! acomplete hl ; x ; ri
Proof. Using Lemmas 4.7 and 4.8 and the assumptions we obtain

h hl ; x ; ri = dlg (jr j1 + 1)e + 1 (�)
mh hl ; x ; ri = blg jr j1c + 1 (��)

Because 1 � jr j1 there is an i such that 2i � jr j1 < 2i + 1 and thus 2i <
jr j1 + 1 � 2i + 1. This implies i = blg jr j1c and i + 1 = dlg (jr j1 + 1)e.
Together with (�) and (��) this implies acomplete hl ; x ; ri. ut

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Braun_Tree.html

124 11 Arrays via Braun Trees

Now we can show that all Braun trees are almost complete:

Lemma 11.2. braun t �! acomplete t

Thus we know that Braun trees have optimal height (Lemma 4.6) and can
even quantify it (Lemma 4.7).

Proof. The proof is by induction. We focus on the induction step where t =

hl ; x ; ri. By assumption we have acomplete l and acomplete r. Because of
braun t we can distinguish two cases. First assume jl j = jr j + 1. The claim
acomplete t follows immediately from the previous lemma. Now assume jl j =
jr j. By definition, there are four cases to consider when proving acomplete t .
By symmetry it suffices to consider only two of them. If h l � h r and
mh r < mh l then acomplete t reduces to acomplete r, which is true by
assumption. Now assume h l � h r and mh l � mh r. Because jl j = jr j,
the fact that the height of an almost complete tree is determined uniquely
by its size (Lemma 4.7) implies h l = h r and thus acomplete t reduces to
acomplete l , which is again true by assumption. ut
Note that the proof does not rely on the fact that it is the left child that is
potentially one bigger than the right one; it merely requires that the difference
in size between two siblings is at most 1.

11.3 Arrays via Braun Trees

In this section we implement arrays by means of Braun trees and verify cor-
rectness and complexity. We start by defining array-like functions on Braun
trees. After the above explanation of Braun trees the following lookup func-
tion will not come as a surprise:

lookup1 :: 0a tree) nat) 0a

lookup1 hl ; x ; ri n
= (if n = 1 then x else lookup1 (if even n then l else r) (n div 2))

The least significant bit is the parity of the index and we advance to the next
bit by div 2. The function is called lookup1 rather than lookup to emphasize
that it expects the index to be at least 1. This simplifies the implementation
via Braun trees but is in contrast to the Array interface where by convention
indexing starts with 0.

Function update1 descends in the very same manner but also performs an
update when reaching 1:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Array_Braun.html

11.3 Arrays via Braun Trees 125

update1 :: nat) 0a) 0a tree) 0a tree

update1 _ x hi = hhi; x ; hii
update1 n x hl ; a ; ri
= (if n = 1 then hl ; x ; ri

else if even n then hupdate1 (n div 2) x l ; a ; ri
else hl ; a ; update1 (n div 2) x ri)

The second equation updates existing entries in case n = 1. The first equation,
however, creates a new entry and thus supports extending the tree. That is,
update1 (jt j + 1) x t extends the tree with a new node x at index jt j + 1.
Function adds iterates this process (again expecting jt j + 1 as the index) and
thus adds a whole list of elements:

adds :: 0a list) nat) 0a tree) 0a tree

adds [] _ t = t
adds (x # xs) n t = adds xs (n + 1) (update1 (n + 1) x t)

The implementation of the Array interface in Figure 11.3 is just a thin
wrapper around the corresponding functions on Braun trees. An array is rep-
resented as a pair of a Braun tree and its size. Note that although update1
can extend the tree, the specification and implementation of the array update
function does not support that: n is expected to be below the length of the
array. Flexible arrays are specified and implemented in Section 11.4.

lookup (t ; _) n = lookup1 t (n + 1)

update n x (t ; m) = (update1 (n + 1) x t ; m)

len (t ; m) = m
array xs = (adds xs 0 hi; jxs j)

Fig. 11.3. Array implementation via Braun trees

11.3.1 Functional Correctness

The invariant on arrays is obvious:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Array_Braun.html

126 11 Arrays via Braun Trees

invar (t ; l) = (braun t ^ l = jt j)

The abstraction function list could be defined in the following intuitive
way, where [m ::<n] is the list of natural numbers from m up to but excluding
n (see Appendix A):

list t = map (lookup1 t) [1::<jt j + 1]

Instead we define list recursively and derive the above equation later on

list :: 0a tree) 0a list

list hi = []

list hl ; x ; ri = x # splice (list l) (list r)

This definition is best explained by looking at Figure 11.2. The subtrees with
root 2 and 3 will be mapped to the lists [2; 4; 6; 8; 10; 12; 14] and [1; 3; 5;

7; 9; 11; 13; 15]. The obvious way to combine these two lists into [1; 2; 3; :::;

15] is to splice them:

splice :: 0a list) 0a list) 0a list

splice [] ys = ys
splice (x # xs) ys = x # splice ys xs

Note that because of this reasonably efficient (O(n lgn), see Section 11.3.2)
implementation of list we can also regard list as part of the interface of arrays.

Before we embark on the actual proofs we state a helpful arithmetic truth
that is frequently used implicitly below:

braun hl ; x ; ri ^ n 2 f1::jhl ; x ; rijg ^ 1 < n �!
(odd n �! n div 2 2 f1::jr jg) ^ (even n �! n div 2 2 f1::jl jg)

where fm ::ng = fk j m � k ^ k � mg.
We will now verify that the implementation in Figure 11.3 of the Array

interface in Figure 11.1 satisfies the given specification.
We start with property (len), the correctness of function len. Because of

the invariant, (len) follows directly from

jlist t j = jt j
which is proved by induction. We will also use this property implicitly in
many proofs below.

The following proposition implies the correctness property (lookup):

11.3 Arrays via Braun Trees 127

braun t ^ i < jt j �! list t ! i = lookup1 t (i + 1) (11.1)

The proof is by induction and uses the following proposition that is also
proved by induction:

n < jxs j + jys j ^ jys j � jxs j ^ jxs j � jys j + 1 �!
splice xs ys ! n = (if even n then xs else ys) ! (n div 2)

As a corollary to (11.1) we obtain that function list can indeed be expressed
via lookup1:

braun t �! list t = map (lookup1 t) [1::<jt j + 1] (11.2)

It follows by list extensionality:

xs = ys ! jxs j = jys j ^ (8 i<jxs j: xs ! i = ys ! i)

Let us now verify update as implemented via update1. The following two
preservation properties (proved by induction) prove (update-inv):

braun t ^ n 2 f1::jt jg �! jupdate1 n x t j = jt j
braun t ^ n 2 f1::jt jg �! braun (update1 n x t)

The following property relating lookup1 and update1 is again proved by in-
duction:

braun t ^ n 2 f1::jt jg �!
lookup1 (update1 n x t) m = (if n = m then x else lookup1 t m)

The last three properties together with (11.2) and list extensionality prove
the following proposition, which implies (update):

braun t ^ n 2 f1::jt jg �! list (update1 n x t) = (list t)[n � 1 := x]

Finally we turn to the constructor array. It is implemented in terms of
adds and update1. Their correctness is captured by the following properties
whose inductive proofs build on each other:

braun t �! jupdate1 (jt j + 1) x t j = jt j + 1 (11.3)

braun t �! braun (update1 (jt j + 1) x t) (11.4)

braun t �! list (update1 (jt j + 1) x t) = list t @ [x] (11.5)

braun t �! jadds xs jt j t j = jt j + jxs j ^ braun (adds xs jt j t)
braun t �! list (adds xs jt j t) = list t @ xs

The last two properties imply the remaining proof obligations (array-inv) and
(array). The proof of (11.5) requires the following two properties of splice
which are proved by simultaneous induction:

jys j � jxs j �! splice (xs @ [x]) ys = splice xs ys @ [x]
jxs j � jys j + 1 �! splice xs (ys @ [y]) = splice xs ys @ [y]

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Array_Braun.html

128 11 Arrays via Braun Trees

11.3.2 Running Time Analysis

The running time of lookup and update is obviously logarithmic because of
the logarithmic height of Braun trees. We sketch why list and array both have
running time O(n lgn). Linear time versions are presented in Section 11.5.

Function list is similar to bottom-up merge sort and splice is similar to
merge. We focus on splice because it performs almost all the work. Consider
calling list on a complete tree of height h. At each level k (starting with 0 for
the root) of the tree, splice is called 2k times with lists of size (almost) 2h�k�1.
The running time of splice with lists of the same length is proportional to
the size of the lists. Thus the running time at each level is O(2k2h�k�1) =

O(2h�1) = O(2h). Thus all the splices together require time O(h 2h). Because
complete trees have size n = 2h, the bound O(n lgn) follows.

Function array is implemented via adds and thus via repeated calls of
update1. At the beginning of Section 7.3 we show that because update1 has
logarithmic complexity, calling it n times on a growing tree starting with a
leaf takes time �(n lgn).

11.4 Flexible Arrays

Flexible arrays can be grown and shrunk at either end. Figure 11.4 shows
the specification of all four operations. (For tl and butlast see Appendix A.)
Array_Flex extends the basis specification Array in Figure 11.1.

ADT Array_Flex = Array +

interface
add_lo :: 0a) 0ar) 0ar
del_lo :: 0ar) 0ar
add_hi :: 0a) 0ar) 0ar
del_hi :: 0ar) 0ar

specification
invar ar �! invar (add_lo a ar) (add_lo-inv)
invar ar �! list (add_lo a ar) = a # list ar (add_lo)
invar ar �! invar (del_lo ar) (del_lo-inv)
invar ar �! list (del_lo ar) = tl (list ar) (del_lo)
invar ar �! invar (add_hi a ar) (add_hi-inv)
invar ar �! list (add_hi a ar) = list ar @ [a] (add_hi)
invar ar �! invar (del_hi ar) (del_hi-inv)
invar ar �! list (del_hi ar) = butlast (list ar) (del_hi)

Fig. 11.4. ADT Array_Flex

11.4 Flexible Arrays 129

Below we first implement the Array_Flex functions on Braun trees. In a
final step an implementation of Array_Flex on (tree,size) pairs is derived.

We have already seen that update1 adds an element at the high end. The
inverse operation del_hi removes the high end, assuming that the given index
is the size of the tree:

del_hi :: nat) 0a tree) 0a tree

del_hi _ hi = hi
del_hi n hl ; x ; ri
= (if n = 1 then hi

else if even n then hdel_hi (n div 2) l ; x ; ri
else hl ; x ; del_hi (n div 2) ri)

This was easy but extending an array at the low end seems hard because
one has to shift the existing entries. However, Braun trees support a logarith-
mic implementation:

add_lo :: 0a) 0a tree) 0a tree

add_lo x hi = hhi; x ; hii
add_lo x hl ; a ; ri = hadd_lo a r ; x ; li

The intended functionality is list (add_lo x t) = x # list t. Function add_lo
installs the new element x at the root of the tree. Because add_lo needs to
shift the indices of the elements already in the tree, the left child (indices 2,
4, . . .) becomes the new right child (indices 3, 5, . . .). The old right child
becomes the new left child with the old root a added in at index 2 and the
remaining elements at indices 4, 6, In the following example, add_lo 0

transforms the left tree into the right one. The numbers in the nodes are the
actual elements, not their indices.

1

2

4 6

3

5

add_lo 0�������!
0

1

3 5

2

4 6

Function del_lo simply reverses add_lo by removing the root and merging
the children:

130 11 Arrays via Braun Trees

del_lo :: 0a tree) 0a tree

del_lo hi = hi
del_lo hl ; _; ri = merge l r

merge :: 0a tree) 0a tree) 0a tree

merge hi r = r
merge hl ; a ; ri rr = hrr ; a ; merge l ri

Figure 11.5 shows the obvious implementation of the functions in the Ar-
ray_Flex specification from Figure 11.4 (on the left-hand side) with the help
of the corresponding Braun tree operations (on the right-hand side). It is an
extension of the basic array implementation from Figure 11.3. All Array_Flex
functions have logarithmic time complexity because the corresponding Braun
tree functions do because they descend along one branch of the tree.

add_lo x (t ; l) = (add_lo x t ; l + 1)

del_lo (t ; l) = (del_lo t ; l � 1)

add_hi x (t ; l) = (update1 (l + 1) x t ; l + 1)

del_hi (t ; l) = (del_hi l t ; l � 1)

Fig. 11.5. Flexible array implementation via Braun trees

11.4.1 Functional Correctness

We now have to prove the properties in Figure 11.4. We have already dealt
with update1 and thus add_hi above. Properties (add_hi -inv) and (add_hi)
follow from (11.3), (11.4) and (11.5) stated earlier.

Correctness of del_hi on Braun trees is captured by the following two
properties proved by induction:

braun t �! braun (del_hi jt j t)
braun t �! list (del_hi jt j t) = butlast (list t) (11.6)

They imply (del_hi -inv) and (del_hi). The proof of (11.6) requires the simple
fact list t = [] ! t = hi and the following property of splice which is proved
by induction:

11.5 Bigger, Better, Faster, More! 131

butlast (splice xs ys)
= (if jys j < jxs j then splice (butlast xs) ys else splice xs (butlast ys))

Correctness of add_lo on Braun trees is captured by the following two
properties proved by induction:

braun t �! braun (add_lo x t)

braun t �! list (add_lo a t) = a # list t

Properties (add_lo-inv) and (add_lo) follow directly from them.
Finally we turn to del_lo. Inductions (for merge) and case analyses (for

del_lo) yield the following properties:

braun hl ; x ; ri �! braun (merge l r)

braun hl ; x ; ri �! list (merge l r) = splice (list l) (list r)

braun t �! braun (del_lo t)

braun t �! list (del_lo t) = tl (list t)

The last two properties imply (del_lo-inv) and (del_lo).

11.5 Bigger, Better, Faster, More!

In this section we meet efficient versions of some old and new functions on
Braun trees. The implementation of the corresponding array operations is
trivial and is not discussed.

11.5.1 Fast Size of Braun Trees

The size of a Braun tree can be computed without having to traverse the
entire tree:

size_fast :: 0a tree) nat

size_fast hi = 0

size_fast hl ; _; ri = (let n = size_fast r in 1 + 2 � n + diff l n)

diff :: 0a tree) nat) nat

diff hi _ = 0

diff hl ; _; ri n
= (if n = 0 then 1

else if even n then diff r (n div 2 � 1) else diff l (n div 2))

132 11 Arrays via Braun Trees

Function size_fast descends down the right spine, computes the size of a
Node as if both children were the same size (1 + 2 � n), but adds diff l n to
compensate for bigger left children. Correctness of size_fast

Lemma 11.3. braun t �! size_fast t = jt j
follows from this property of diff :

braun t ^ jt j 2 fn ; n + 1g �! diff t n = jt j � n

The running time of size_fast is quadratic in the height of the tree (see
Exercise 11.3).

11.5.2 Initializing a Braun Tree with a Fixed Value

Above we only considered the construction of a Braun tree from a list. Alterna-
tively one may want to create a tree (array) where all elements are initialized
to the same value. Of course one can call update1 n times, but one can also
build the tree directly:

braun_of_naive x n
= (if n = 0 then hi

else let m = (n � 1) div 2

in if odd n
then hbraun_of_naive x m ; x ; braun_of_naive x mi
else hbraun_of_naive x (m + 1); x ;

braun_of_naive x mi)

This solution also has time complexity O(n lgn) but it can clearly be improved
by sharing identical recursive calls. Function braun2_of shares as much as
possible by producing trees of size n and n+ 1 in parallel:

braun2_of :: 0a) nat) 0a tree � 0a tree

braun2_of x n
= (if n = 0 then (hi; hhi; x ; hii)

else let (s ; t) = braun2_of x ((n � 1) div 2)

in if odd n then (hs ; x ; si; ht ; x ; si) else (ht ; x ; si; ht ; x ; ti))

braun_of :: 0a) nat) 0a tree

braun_of x n = fst (braun2_of x n)

The running time is clearly logarithmic.
The correctness properties (see Appendix A for replicate)

11.5 Bigger, Better, Faster, More! 133

list (braun_of x n) = replicate n x

braun (braun_of x n)

are corollaries of the more general statements

braun2_of x n = (s ; t) �!
list s = replicate n x ^ list t = replicate (n + 1) x

braun2_of x n = (s ; t) �!
js j = n ^ jt j = n + 1 ^ braun s ^ braun t

which can both be proved by induction.

11.5.3 Converting a List into a Braun Tree

We improve on function adds from Section 11.3 that has running time
�(n lgn) by developing a linear-time function. Given a list of elements
[1; 2; : : :], we can subdivide it into sublists [1], [2; 3], [4; : : : ; 7], . . . such that
the kth sublist contains the elements of level k of the corresponding Braun
tree. This is simply because on each level we have the entries whose index has
k+1 bits. Thus we need to process the input list in chunks of size 2k to produce
the trees on level k. But we also need to get the order right. To understand
how that works, consider the last two levels of the tree in Figure 11.2:

4

8 12

6

10 14

5

9 13

7

11 15

If we rearrange them in increasing order of the root labels

4

8 12

5

9 13

6

10 14

7

11 15

the following pattern emerges: the left subtrees are labeled [8; : : : ; 11], the
right subtrees [12; : : : ; 15]. Call t i the tree with root label i. The correct order
of subtrees, i.e. t4, t6, t5, t7, is restored when the three lists [t4; t5], [2; 3]
(the labels above) and [t6; t7] are combined into new trees by going through
them simultaneously from left to right, yielding [ht4; 2; t6i; ht5; 3; t7i], the
level above.

Abstracting from this example we arrive at the following code. Loosely
speaking, brauns k xs produces the Braun trees on level k.

134 11 Arrays via Braun Trees

brauns :: nat) 0a list) 0a tree list

brauns k xs
= (if xs = [] then []

else let ys = take 2k xs ;
zs = drop 2k xs ;
ts = brauns (k + 1) zs

in nodes ts ys (drop 2k ts))

Function brauns chops off a chunk ys of size 2k from the input list and
recursively converts the remainder of the list into a list ts of (at most) 2k+1

trees. This list is (conceptually) split into take 2k ts and drop 2k ts which
are combined with ys by function nodes that traverses its three argument
lists simultaneously. As a local optimization, we pass all of ts rather than just
take 2k ts to nodes.

nodes :: 0a tree list) 0a list) 0a tree list) 0a tree list

nodes (l # ls) (x # xs) (r # rs) = hl ; x ; ri # nodes ls xs rs
nodes (l # ls) (x # xs) [] = hl ; x ; hii # nodes ls xs []

nodes [] (x # xs) (r # rs) = hhi; x ; ri # nodes [] xs rs
nodes [] (x # xs) [] = hhi; x ; hii # nodes [] xs []

nodes _ [] _ = []

Because the input list may not have exactly 2n � 1 elements, some of the
chunks of elements and trees may be shorter than 2k. To compensate for
that, function nodes implicitly pads lists of trees at the end with leaves. This
padding is the purpose of equations two to four.

The top-level function for turning a list into a tree simply extracts the
first (and only) element from the list computed by brauns 0:

brauns1 :: 0a list) 0a tree

brauns1 xs = (if xs = [] then hi else brauns 0 xs ! 0)

Functional Correctness

The key correctness lemma below expresses a property of Braun trees: the
subtrees on level k consist of all elements of the input list xs that are 2k

elements apart, starting from some offset. To state this concisely we define

11.5 Bigger, Better, Faster, More! 135

take_nths :: nat) nat) 0a list) 0a list

take_nths _ _ [] = []

take_nths i k (x # xs)
= (if i = 0 then x # take_nths (2k � 1) k xs

else take_nths (i � 1) k xs)

The result of take_nths i k xs is every 2k-th element in drop i xs.
A number of simple properties follow by easy inductions:

take_nths i k (drop j xs) = take_nths (i + j) k xs (11.7)

take_nths 0 0 xs = xs (11.8)

splice (take_nths 0 1 xs) (take_nths 1 1 xs) = xs (11.9)

take_nths i m (take_nths j n xs)
= take_nths (i � 2n + j) (m + n) xs (11.10)

take_nths i k xs = [] ! jxs j � i (11.11)

i < jxs j �! hd (take_nths i k xs) = xs ! i (11.12)

jxs j = jys j _ jxs j = jys j + 1 �!
take_nths 0 1 (splice xs ys) = xs ^
take_nths 1 1 (splice xs ys) = ys (11.13)

jtake_nths 0 1 xs j = jtake_nths 1 1 xs j _
jtake_nths 0 1 xs j = jtake_nths 1 1 xs j + 1 (11.14)

We also introduce a predicate relating a tree to a list:

braun_list :: 0a tree) 0a list) bool

braun_list hi xs = (xs = [])

braun_list hl ; x ; ri xs
= (xs 6= [] ^ x = hd xs ^

braun_list l (take_nths 1 1 xs) ^
braun_list r (take_nths 2 1 xs))

This definition may look a bit mysterious at first but it satisfies a simple
specification: braun_list t xs ! braun t ^ xs = list t (see below). The
idea of the above definition is that instead of relating hl ; x ; ri to xs via
splice we invert the process and relate l and r to the even and odd numbered
elements of drop 1 xs.

Lemma 11.4. braun_list t xs ! braun t ^ xs = list t

136 11 Arrays via Braun Trees

Proof. The proof is by induction on t. The base case is trivial. In the induction
step the key properties are (11.14) to prove braun t and (11.9) and (11.13)
to prove xs = list t. ut

The correctness proof of brauns rests on a few simple inductive properties:

jnodes ls xs rs j = jxs j (11.15)

i < jxs j �!
nodes ls xs rs ! i
= hif i < jls j then ls ! i else hi; xs ! i ;

if i < jrs j then rs ! i else hii (11.16)

jbrauns k xs j = min jxs j 2k (11.17)

The main theorem expresses the following correctness property of the el-
ements of brauns k xs : every tree brauns k xs ! i is a Braun tree and its list
of elements is take_nths i k xs :

Theorem 11.5. i < min jxs j 2k �!
braun_list (brauns k xs ! i) (take_nths i k xs)

Proof. The proof is by induction on the length of xs. Assume i < min jxs j
2k, which implies xs 6= []. Let zs = drop 2k xs. Thus jzs j < jxs j and therefore
the IH applies to zs and yields the property

8 i j : j = i + 2k ^ i < min jzs j 2k + 1 �!
braun_list (ts ! i) (take_nths j (k + 1) xs) (�)

where ts = brauns (k + 1) zs. Let ts 0 = drop 2k ts. Below we examine nodes
ts _ ts 0 ! i with the help of (11.16). Thus there are four similar cases of which
we only discuss one representative one: assume i < jts j and i � jts 0j.

braun_list (brauns k xs ! i) (take_nths i k xs)
 ! braun_list (nodes ts (take 2k xs) ts 0 ! i) (take_nths i k xs)
 ! braun_list (ts ! i) (take_nths (2k + i) (k + 1) xs) ^

braun_list hi (take_nths (2k + 1 + i) (k + 1) xs)
by (11.16), (11.10), (11.11), (11.12) and assumptions

 ! True by (�), (11.11), (11.17) and assumptions
ut

Setting i = k = 0 in this theorem we obtain the correctness of brauns1 using
Lemma 11.4 and (11.8):

Corollary 11.6. braun (brauns1 xs) ^ list (brauns1 xs) = xs

11.5 Bigger, Better, Faster, More! 137

Running Time Analysis

We focus on function brauns. In the step from brauns to Tbrauns we simplify
matters a little bit: we count only the expensive operations that traverse lists
and ignore the other small additive constants. The time to evaluate take n xs
and drop n xs is linear in min n jxs j and we simply use min n jxs j. Evaluating
nodes ls xs rs takes time linear in jxs j and jtake n xs j = min n jxs j. As a
result we obtain the following definition of Tbrauns:

Tbrauns :: nat) 0a list) nat

Tbrauns k xs
= (if xs = [] then 0

else let ys = take 2k xs ; zs = drop 2k xs ; ts = brauns (k + 1) zs
in 4 � min 2k jxs j + Tbrauns (k + 1) zs)

It is easy to prove that Tbrauns is linear:

Lemma 11.7. Tbrauns k xs = 4 � jxs j

Proof. The proof is by induction on the length of xs. If xs = [] the claim is
trivial. Now assume xs 6= [] and let zs = drop 2k xs.

Tbrauns k xs = Tbrauns (k + 1) zs + 4 � min 2k jxs j
= 4 � jzs j + 4 � min 2k jxs j by IH
= 4 � (jxs j � 2k) + 4 � min 2k jxs j = 4 � jxs j ut

11.5.4 Converting a Braun Tree into a List

We improve on function list that has running time O(n lgn) by developing
a linear-time version. Imagine that we want to invert the computation of
brauns1 and thus of brauns. Thus it is natural to convert not merely a single
tree but a list of trees. Looking once more at the reordered list of subtrees

4

8 12

5

9 13

6

10 14

7

11 15

the following strategy strongly suggests itself: first the roots, then the left
children, then the right children. The recursive application of this strategy
also takes care of the required reordering of the subtrees. Of course we have
to ignore any leaves we encounter. This is the resulting function:

138 11 Arrays via Braun Trees

list_fast_rec :: 0a tree list) 0a list

list_fast_rec ts
= (let us = filter (�t : t 6= hi) ts

in if us = [] then []

else map value us @ list_fast_rec (map left us @ map right us))

value hl ; x ; ri = x
left hl ; x ; ri = l
right hl ; x ; ri = r

Termination of list_fast_rec is almost obvious because left and right remove
the top node of a tree. Thus size seems the right measure. But if ts = [hi],
the measure is 0 but it still leads to a recursive call (with argument []). This
problem can be avoided with the measure function ' = sum_list � map f
where f = (�t : 2 � jt j + 1). Assume ts 6= [] and let us = filter (�t : t 6= hi)
ts. We need to show that ' (map left us @ map right us) < ' ts. Take some
t in ts. If t = hi, f t = 1 but t is no longer in us, i.e. the measure decreases by
1. If t = hl ; x ; ri then f t = 2 � jl j + 2 � jr j + 3 but f (left t) + f (right t)
= 2 � jl j + 2 � jr j + 2 and thus the measure also decreases by 1. Because ts
6= [] this proves ' (map left us @ map right us) < ' ts. We do not show
the technical details.

Finally, the top level function to extract a list from a single tree:

list_fast :: 0a tree) 0a list

list_fast t = list_fast_rec [t]

From list_fast one can easily derive an efficient fold function on Braun
trees that processes the elements in the tree in the order of their indexes.

Functional Correctness

We want to prove correctness of list_fast : list_fast t = list t if braun t. A
direct proof of list_fast_rec [t] = list t will fail and we need to generalize
this statement to all lists of length 2k. Reusing the infrastructure from the
previous subsection this can be expressed as follows:

Theorem 11.8. jts j = 2k ^ (8 i<2k: braun_list (ts ! i) (take_nths i k xs))
�! list_fast_rec ts = xs

Proof. The proof is by induction on the length of xs. Assume the two
premises. There are two cases.

11.5 Bigger, Better, Faster, More! 139

First assume jxs j < 2k. Then

ts = map (�x : hhi; x ; hii) xs @ replicate n hi (�)
where n = jts j � jxs j. This can be proved pointwise. Take some i < 2k. If i
< jxs j then take_nths i k xs = take 1 (drop i xs) (which can be proved by
induction on xs). By definition of braun_list it follows that t ! i = hl ; xs !

i ; ri for some l and r such that braun_list l [] and braun_list l [] and thus
l = r = hi, i.e. t ! i = hhi; xs ! i ; hii. If : i < jxs j then take_nths i k xs =

[] by (11.11) and thus braun_list (ts ! i) [] by the second premise and thus
ts ! i = hi by definition of braun_list. This concludes the proof of (�). The
desired list_fast_rec ts = xs follows easily by definition of list_fast_rec.

Now assume : jxs j < 2k. Then for all i < 2k

ts ! i 6= hi ^ value (ts ! i) = xs ! i ^
braun_list (left (ts ! i)) (take_nths (i + 2k) (k + 1) xs) ^
braun_list (right (ts ! i)) (take_nths (i + 2 � 2k) (k + 1) xs)

follows from the second premise with the help of (11.10), (11.11) and (11.12).
We obtain two consequences:

map value ts = take 2k xs

list_fast_rec (map left ts @ map right ts) = drop 2k xs

The first consequence follows by pointwise reasoning, the second consequence
with the help of the IH and (11.7). From these two consequences the desired
conclusion list_fast_rec ts = xs follows by definition of list_fast_rec. ut

Running Time Analysis

We focus on list_fast_rec. In the step from list_fast_rec to Tlist_fast_rec we
simplify matters a little bit: we count only the expensive operations that tra-
verse lists and ignore the other small additive constants. The time to evaluate
map value ts, map left ts, map right ts, filter (�t : t 6= hi) ts and ts @ _
is linear in jts j and we simply use jts j. As a result we obtain the following
definition of Tlist_fast_rec:

Tlist_fast_rec :: 0a tree list) nat

Tlist_fast_rec ts
= (let us = filter (�t : t 6= hi) ts

in jts j +
(if us = [] then 0

else 5 � jus j + Tlist_fast_rec (map left us @ map right us)))

140 11 Arrays via Braun Trees

The following inductive property is an abstraction of the core of the ter-
mination argument of list_fast_rec above.

(8 t2set ts : t 6= hi) �!
(
P

t ts k � jt j) = (
P

t map left ts @ map right ts k � jt j) + k � jts j (11.18)

The suggestive notation
P

x xs : f x abbreviates sum_list (map f xs).
Now we can state and prove a linear upper bound of Tlist_fast_rec:

Theorem 11.9. Tlist_fast_rec ts � (
P

t ts 7 � jt j + 1)

Proof. The proof is by induction on the size of ts, again using the measure
function �t : 2 � jt j + 1 which decreases with recursive calls as we proved
above. If ts = [] the claim is trivial. Now assume ts 6= [] and let us = filter
(�t : t 6= hi) ts and children = map left us @ map right us.

Tlist_fast_rec ts = Tlist_fast_rec children + 5 � jus j + jts j
� (
P

t children 7 � jt j + 1) + 5 � jus j + jts j by IH
= (
P

t children 7 � jt j) + 7 � jus j + jts j
= (
P

t us 7 � jt j) + jts j by (11.18)
� (
P

t ts 7 � jt j) + jts j = (
P

t ts 7 � jt j + 1) ut

11.6 Exercises

Exercise 11.1. Instead of first showing that Braun trees are almost complete,
give a direct proof of braun t �! h t = dlg jt j1e by first showing braun t
�! 2h t � 2 � jt j + 1 by induction.

Exercise 11.2. Show that function bal in Section 4.3.1 produces Braun trees:
n � jxs j ^ bal n xs = (t ; zs) �! braun t. (Isabelle hint: bal needs to be
qualified as Balance :bal.)

Exercise 11.3. One can view Braun trees as tries (see Chapter 12) by index-
ing them not with a nat but a bool list where each bit tells us whether to
go left or right (as explained at the start of Section 11.2). Function nat_of
specifies the intended correspondence:

nat_of :: bool list) nat

nat_of [] = 1

nat_of (b # bs) = 2 � nat_of bs + (if b then 1 else 0)

Define the counterparts of lookup1 and update1

lookup_trie :: 0a tree) bool list) 0a
update_trie :: bool list) 0a) 0a tree) 0a tree

11.6 Exercises 141

and prove their correctness:

braun t ^ nat_of bs 2 f1::jt jg �!
lookup_trie t bs = lookup1 t (nat_of bs)

update_trie bs x t = update1 (nat_of bs) x t

Exercise 11.4. Function del_lo is defined with the help of function merge.
Define a recursive function del_lo2 :: 0a tree) 0a tree without recourse to
any auxiliary function and prove del_lo2 t = del_lo t.

Exercise 11.5. Let lh, the “left height”, compute the length of the left spine
of a tree. Prove that the left height of a Braun tree is equal to its height:
braun t �! lh t = h t

Exercise 11.6. Show that the running time of size_fast is quadratic in the
height of the tree: Define the running time functions Tdiff and Tsize_fast (taking
0 time in the base cases) and prove Tsize_fast t � (h t)2.

Exercise 11.7. Prove correctness of function braun_of_naive defined in
Section 11.5.2: list (braun_of_naive x n) = replicate n x.

Bibliographic Remarks

Braun trees were investigated by Braun and Rem [67] and later, in a functional
setting, by Hoogerwoord [31] who coined the term “Braun tree”. Section 11.5
is partly based on work by Okasaki [61]. The whole chapter is based on work
by Nipkow and Sewell [58].

12

Tries

A trie is a search tree where keys are strings, i.e. lists. A trie can be viewed as
a tree-shaped finite automaton where the root is the start state. For example,
the set of strings fa; an; can; car; catg is encoded as the trie in Figure 12.1.
The solid states are accepting, i.e. those nodes terminate the string leading
to them.

n

a

n r t

a

c

Fig. 12.1. A trie encoding fa; an; can; car; catg

12.1 Abstract Tries via Functions

A nicely abstract model of tries is the following type:

datatype 0a trie = Nd bool (0a) 0a trie option)

In a node Nd b f, b indicates if it is an accepting node and f maps characters
to sub-tries.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Trie_Fun.html

144 12 Tries

There is no invariant, i.e. the invariant is simply True : there are no or-
dering, balance or other requirements.

Below we use a variant of the function update notation f (a := b):

f (a 7! b) � f (a := Some b)

This is how the ADT Set is implemented by means of tries:

empty :: 0a trie

empty = Nd False (�_: None)

isin :: 0a trie) 0a list) bool

isin (Nd b _) [] = b
isin (Nd _ m) (k # xs)
= (case m k of None) False j Some t) isin t xs)

insert :: 0a list) 0a trie) 0a trie

insert [] (Nd _ m) = Nd True m
insert (x # xs) (Nd b m)

= (let s = case m x of None) empty j Some t) t
in Nd b (m(x 7! insert xs s)))

delete :: 0a list) 0a trie) 0a trie

delete [] (Nd _ m) = Nd False m
delete (x # xs) (Nd b m)

= Nd b (case m x of None) m j Some t) m(x 7! delete xs t))

The definitions are straightforward. But note that delete does not try to
shrink the trie. For example:

a
delete [a]

a

Formally:

delete [a] (Nd False [a 7! Nd True (�_: None)])
= Nd False [a 7! Nd False (�_: None)]

where [x 7! t] � (�_: None)(x 7! t). The resulting trie is correct (it repre-
sents the empty set of strings) but could have been shrunk to Nd False (�_:
None).

12.2 Binary Tries 145

Functional Correctness

For the correctness proof we take a lazy approach and define the abstraction
function in a trivial manner via isin :

set :: 0a trie) 0a list set

set t = fxs j isin t xsg

Correctness of empty and isin (set empty = fg and isin t xs = (xs 2 set t))
are trivial, correctness of insertion and deletion are easily proved by induction:

set (insert xs t) = set t [fxsg
set (delete xs t) = set t � fxsg
This simple model of tries leads to simple correctness proofs but is com-

putationally inefficient because of the function space in 0a) 0a trie option.
In principle, any representation of this function space, for example by some
search tree, works. However, such a generic theory is relatively complex. Hence
we restrict ourselves to binary tries when exploring more efficient implemen-
tations of tries.

12.2 Binary Tries

A binary trie is a trie over the alphabet bool. That is, binary tries represent
sets of bool list. More concretely, every node has two children:

datatype trie = Lf j Nd bool (trie � trie)

A binary trie, for example

Nd False (Nd True (Nd False (Lf ; Lf); Nd True (Lf ; Lf)); Lf)

can be visualized like this:

False True

False

Lf s are not shown at all. The edge labels indicated that False refers to the
left and True to the right child. This convention is encoded in the following
auxiliary functions selecting from and modifying pairs:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tries_Binary.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tries_Binary.html

146 12 Tries

sel2 :: bool) 0a � 0a) 0a

sel2 b (a1; a2) = (if b then a2 else a1)

mod2 :: (0a) 0a)) bool) 0a � 0a) 0a � 0a

mod2 f b (a1; a2) = (if b then (a1; f a2) else (f a1; a2))

The implementation of the Set interface is shown in Figure 12.2. Function
delete shrinks a non-accepting Nd if both children have become empty.

empty :: trie

empty = Lf

isin :: trie) bool list) bool

isin Lf ks = False
isin (Nd b lr) ks = (case ks of []) b j k # ks 0) isin (sel2 k lr) ks 0)

insert :: bool list) trie) trie

insert [] Lf = Nd True (Lf ; Lf)
insert [] (Nd _ lr) = Nd True lr
insert (k # ks) Lf = Nd False (mod2 (insert ks) k (Lf ; Lf))
insert (k # ks) (Nd b lr) = Nd b (mod2 (insert ks) k lr)

delete :: bool list) trie) trie

delete _ Lf = Lf
delete ks (Nd b lr)
= (case ks of []) node False lr

j k # ks 0) node b (mod2 (delete ks 0) k lr))

node b lr = (if : b ^ lr = (Lf ; Lf) then Lf else Nd b lr)

Fig. 12.2. Implementation of Set via binary tries

Functional Correctness

For the correctness proof we take the same lazy approach as above:

set_trie :: trie) bool list set

set_trie t = fxs j isin t xsg

12.3 Binary Patricia Tries 147

We are also lazy in that we set the invariant to True. A more precise
invariant would express that the tries are minimal, i.e. cannot be shrunk. See
Exercise 12.2. It turns out that the correctness properties do not require this
more precise invariant.

The two non-trivial correctness properties are

set_trie (insert xs t) = set_trie t [fxsg (12.1)

set_trie (delete xs t) = set_trie t � fxsg (12.2)

are simple consequences of the following inductive properties:

isin (insert xs t) ys = (xs = ys _ isin t ys)

isin (delete xs t) ys = (xs 6= ys ^ isin t ys)

12.3 Binary Patricia Tries

Tries can contain long branches without branching. These can be contracted
by storing the branch directly in the start node. The result is called a Patricia
trie. The following figure shows the contraction of a trie into a Patricia trie:

s t

r

a

c
 car

s t

This is the data type of binary Patricia tries:

datatype trieP = LfP j NdP (bool list) bool (trieP � trieP)

The implementation of the Set interface via binary Patricia tries is shown
in Figure 12.3.

Functional Correctness

This is an exercise in stepwise data refinement. We have already proved that
trie implements Set via an abstraction function. Now we map trieP back

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tries_Binary.html
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tries_Binary.html

148 12 Tries

emptyP = LfP

isinP LfP ks = False
isinP (NdP ps b lr) ks
= (let n = jps j

in if ps = take n ks
then case drop n ks of []) b j k # x) isinP (sel2 k lr) x
else False)

insertP ks LfP = NdP ks True (LfP ; LfP)

insertP ks (NdP ps b lr)
= (case split ks ps of (_; []; [])) NdP ps True lr

j (qs ; []; p # ps 0))

let t = NdP ps 0 b lr
in NdP qs True (if p then (LfP ; t) else (t ; LfP))

j (_; k # ks 0; [])) NdP ps b (mod2 (insertP ks 0) k lr)
j (qs ; k # ks 0; _# ps 0))

let tp = NdP ps 0 b lr ; tk = NdP ks 0 True (LfP ; LfP)

in NdP qs False (if k then (tp; tk) else (tk ; tp)))

deleteP ks LfP = LfP
deleteP ks (NdP ps b lr) =
(case split ks ps of

(qs ; ks 0; p # ps 0)) NdP ps b lr
j (qs ; k # ks 0; [])) nodeP ps b (mod2 (deleteP ks 0) k lr)
j (qs ; []; [])) nodeP ps False lr)

nodeP ps b lr = (if : b ^ lr = (LfP ; LfP) then LfP else NdP ps b lr)

Fig. 12.3. Implementation of Set via binary Patricia tries

to trie via another abstraction function. Afterwards the overall correctness
follows trivially by composing the two abstraction functions.

The abstraction function abs_trieP is defined via an auxiliary function
that prefixes a trie with a bit list:

prefix_trie :: bool list) trie) trie

prefix_trie [] t = t
prefix_trie (k # ks) t
= (let t 0 = prefix_trie ks t

in Nd False (if k then (Lf ; t 0) else (t 0; Lf)))

12.3 Binary Patricia Tries 149

abs_trieP :: trieP) trie

abs_trieP LfP = Lf
abs_trieP (NdP ps b (l ; r))
= prefix_trie ps (Nd b (abs_trieP l ; abs_trieP r))

Again we take a lazy approach and set the invariant on trieP to True.
Correctness of emptyP is trivial. Correctness of the remaining operations

is proved by induction and requires a number of supporting inductive lemmas
which we display before the corresponding correctness property.

Correctness of isinP :

isin (prefix_trie ps t) ks = (ps = take jps j ks ^ isin t (drop jps j ks))
isinP t ks = isin (abs_trieP t) ks (12.3)

Correctness of insertP :

prefix_trie ks (Nd True (Lf ; Lf)) = insert ks Lf

insert ps (prefix_trie ps (Nd b lr)) = prefix_trie ps (Nd True lr)

insert (ks @ ks 0) (prefix_trie ks t) = prefix_trie ks (insert ks 0 t)

prefix_trie (ps @ qs) t = prefix_trie ps (prefix_trie qs t)

split ks ps = (qs ; ks 0; ps 0) �!
ks = qs @ ks 0 ^ ps = qs @ ps 0 ^
(ks 0 6= [] ^ ps 0 6= [] �! hd ks 0 6= hd ps 0)

abs_trieP (insertP ks t) = insert ks (abs_trieP t) (12.4)

Correctness of deleteP :

delete xs (prefix_trie xs (Nd b (l ; r)))
= (if (l ; r) = (Lf ; Lf) then Lf else prefix_trie xs (Nd False (l ; r)))

delete (xs @ ys) (prefix_trie xs t)
= (if delete ys t = Lf then Lf else prefix_trie xs (delete ys t))

abs_trieP (deleteP ks t) = delete ks (abs_trieP t) (12.5)

It is now trivial to obtain the correctness of the trieP implementation of
sets. The abstraction function is simply the composition of the two abstrac-
tion abstraction functions: set_trieP = set_trie � abs_trieP. The required
correctness properties (ignoring emptyP and isinP)

set_trieP (insertP xs t) = set_trieP t [fxsg
set_trieP (deleteP xs t) = set_trieP t � fxsg

are trivial compositions of (12.1)/(12.2) and (12.4)/(12.5).

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Tries_Binary.html

150 12 Tries

12.4 Exercises

Exercise 12.1. Rework the above theory of binary tries as follows. Eliminate
the bool argument from constructor Nd by replacing Nd by two constructors
representing Nd True and Nd False.

Exercise 12.2. Define the invariant invar that characterizes fully shrunk
binary tries, i.e. tries where every non-Lf trie represents a non-empty set.
Note that a trie represents the empty set if it does not contain any node Nd
True _. Prove that insert and delete maintain the invariant.

Bibliographic Remarks

Tries were first sketched by De La Briandais [15] and described in more detail
by Fredkin [20] who coined their name based on the word reTRIEval. However,
“trie” is usually pronounced like “try” rather than “tree” to avoid confusion.
Patricia tries are due to Morrison [50].

13

Huffman’s Algorithm

Huffman’s algorithm [32] is a simple and elegant procedure for constructing
a binary tree with minimum weighted path length—a measure of cost that
considers both the lengths of the paths from the root to the leaf nodes and
the weights associated with the leaf nodes. The algorithm’s main application
is data compression: By equating leaf nodes with characters, and weights with
character frequencies, we can use it to derive optimum binary codes. A binary
code is a map from characters to non-empty sequences.

This chapter presents Huffman’s algorithm and its optimality proof. The
proof follows Knuth’s informal argument [42]. This chapter’s text is based on a
published article [8]. An alternative formal proof, in Coq, is due to Théry [73].

13.1 Binary Codes

Suppose we want to encode strings over a finite source alphabet as sequences
of bits. Fixed-length codes like ASCII are simple and fast, but they generally
waste space. If we know the frequency wa of each source symbol a, we can
save space by using shorter code words for the most frequent symbols. We
say that a variable-length code is optimum if it minimizes the sum

P
a wa �a,

where �a is the length of the binary code word for a.
As an example, consider the string ‘abacabad ’. Encoding it with the code

C1 = fa 7! 0; b 7! 10; c 7! 110; d 7! 111g
gives the 14-bit code word 01001100100111. The code C1 is optimum: No
code that unambiguously encodes source symbols one at a time could do
better than C1 on the input ‘abacabad ’. With a fixed-length code such as

C2 = fa 7! 00; b 7! 01; c 7! 10; d 7! 11g

https://devel.isa-afp.org/browser_info/current/AFP/Huffman/Huffman.html

152 13 Huffman’s Algorithm

we need at least 16 bits to encode the same string.
Binary codes can be represented by binary trees. For example, the trees

a

0

b

0

c

0

d

1

1

1

and

a

0

b

1

0

c

0

d

1

1

correspond to C1 and C2. The code word for a given symbol can be obtained
as follows: Start at the root and descend toward the leaf node associated with
the symbol one node at a time; emit a 0 whenever the left child of the current
node is chosen and a 1 whenever the right child is chosen. The generated
sequence of 0s and 1s is the code word.

To avoid ambiguities, we require that only leaf nodes are labeled with
symbols. This ensures that no code word is a prefix of another. Moreover, it
is sufficient to consider only full binary trees (trees whose inner nodes all have
two children), because any node with only one child can advantageously be
eliminated by removing it and letting the child take its parent’s place.

Each node in a code tree is assigned a weight. For a leaf node, the weight
is the frequency of its symbol; for an inner node, it is the sum of the weights
of its subtrees. In diagrams, we often annotate the nodes with their weights.

13.2 The Algorithm

David Huffman [32] discovered a simple algorithm for constructing an opti-
mum code tree for specified symbol frequencies: Create a forest consisting of
only leaf nodes, one for each symbol in the alphabet, taking the given symbol
frequencies as initial weights for the nodes. Then pick the two trees

w1

and
w2

with the lowest weights and replace them with the tree

13.2 The Algorithm 153

w1 w2

w1+w2

Repeat this process until only one tree is left.
As an illustration, executing the algorithm for the frequencies fd = 3,

fe = 11, ff = 5, fs = 7; fz = 2 gives rise to the following sequence of states:

1.
z
2

d
3

f
5

s
7

e
11

2.
5

z
2

d
3

f
5

s
7

e
11

3.
10

5

z
2

d
3

f
5

s
7

e
11

4.
17

10

5

z
2

d
3

f
5

s
7

e
11

154 13 Huffman’s Algorithm

5.
28

17

10

5

z
2

d
3

f
5

s
7

e
11

The resulting tree is optimum for the given frequencies.

13.3 The Implementation

The functional implementation of the algorithm relies on the following type:

datatype 0a tree = Leaf nat 0a j Node nat (0a tree) (0a tree)

Leaf nodes are of the form Leaf w a, where a is a symbol and w is the
frequency associated with a, and inner nodes are of the form Node w t1 t2,
where t1 and t2 are the left and right subtrees and w caches the sum of the
weights of t1 and t2. The cachedWeight function extracts the weight stored
in a node:

cachedWeight (Leaf w a) = w
cachedWeight (Node w t1 t2) = w

The implementation builds on two additional auxiliary functions. The first
one, uniteTrees, combines two trees by adding an inner node above them:

uniteTrees t1 t2 = Node (cachedWeight t1 + cachedWeight t2) t1 t2

The second function, insortTree, inserts a tree into a forest sorted by cached
weight, preserving the sort order:

13.4 Basic Auxiliary Functions Needed for the Proof 155

insortTree u [] = [u]
insortTree u (t # ts)
= (if cachedWeight u � cachedWeight t then u # t # ts

else t # insortTree u ts)

The main function that implements Huffman’s algorithm follows:

huffman [t] = t
huffman (t1 # t2 # ts) = huffman (insortTree (uniteTrees t1 t2) ts)

The function should initially be invoked with a non-empty list of leaf nodes
sorted by weight. It repeatedly unites the first two trees of the forest it receives
as argument until a single tree is left.

13.4 Basic Auxiliary Functions Needed for the Proof

This section introduces basic concepts such as alphabet, consistency, and opti-
mality, which are needed to state the correctness and optimality of Huffman’s
algorithm. The next section introduces more specialized functions that arise
in the proof.

The alphabet of a code tree is the set of symbols appearing in the tree’s
leaf nodes:

alphabet (Leaf w a) = fag
alphabet (Node w t1 t2) = alphabet t1 [alphabet t2

A tree is consistent if for each inner node the alphabets of the two subtrees
are disjoint. Intuitively, this means that a symbol occurs in at most one leaf
node. Consistency is a sufficient condition for �a (the length of the code word
for a) to be uniquely defined. This well-formedness property appears as an
assumption in many of the Isabelle lemmas. The definition follows:

consistent (Leaf w a) = True
consistent (Node w t1 t2)
= (alphabet t1 \ alphabet t2 = fg ^ consistent t1 ^ consistent t2)

The depth of a symbol (which we wrote as �a above) is the length of the
path from the root to that symbol, or equivalently the length of the code word
for the symbol:

156 13 Huffman’s Algorithm

depth (Leaf w b) a = 0

depth (Node w t1 t2) a
= (if a 2 alphabet t1 then depth t1 a + 1

else if a 2 alphabet t2 then depth t2 a + 1 else 0)

By convention, symbols that do not occur in the tree or that occur at the
root of a one-node tree are given a depth of 0. If a symbol occurs in several
leaf nodes (of an inconsistent tree), the depth is arbitrarily defined in terms
of the leftmost node labeled with that symbol.

The height of a tree is the length of the longest path from the root to a
leaf node, or equivalently the length of the longest code word:

height (Leaf w a) = 0

height (Node w t1 t2) = max (height t1) (height t2) + 1

The frequency of a symbol (which we wrote as wa above) is the sum of
the weights attached to the leaf nodes labeled with that symbol:

freq (Leaf w a) b = (if b = a then w else 0)

freq (Node w t1 t2) b = freq t1 b + freq t2 b

For consistent trees, the sum comprises at most one nonzero term. The fre-
quency is then the weight of the leaf node labeled with the symbol, or 0 if
there is no such node.

Two trees are comparable if they have the same alphabet and symbol
frequencies. This is an important concept, because it allows us to state not
only that the tree constructed by Huffman’s algorithm is optimal but also
that it has the expected alphabet and frequencies.

The weight function returns the weight of a tree:

weight (Leaf w a) = w
weight (Node w t1 t2) = weight t1 + weight t2

In the Node case, we ignore the weight cached in the node and instead com-
pute the tree’s weight recursively.

The cost (or weighted path length) of a consistent tree is the sumP
a 2 alphabet t freq t a � depth t a (which we wrote as

P
a wa �a above). It is

defined recursively by

13.5 Other Functions Needed for the Proof 157

cost (Leaf w a) = 0

cost (Node w t1 t2) = weight t1 + cost t1 + weight t2 + cost t2

A tree is optimum if and only if its cost is not greater than that of any
comparable tree:

optimum t
= (8u : consistent u �!

alphabet t = alphabet u �!
freq t = freq u �! cost t � cost u)

Tree functions are readily generalized to forests; for example, the alphabet
of a forest is defined as the union of the alphabets of its trees. The forest
generalizations have a subscript ‘F ’ attached to their name (e.g. alphabetF).

13.5 Other Functions Needed for the Proof

The optimality proof needs to interchange nodes in trees, to replace a two-
leaf subtree with weights w1 and w2 by a single leaf of weight w1 + w2 and
vice versa, and to refer to the two symbols with the lowest frequencies. These
concepts are represented by four functions: swapFourSyms, mergeSibling,
splitLeaf, and minima.

The four-way symbol interchange function swapFourSyms takes four sym-
bols a, b, c, d with a 6= b and c 6= d, and exchanges them so that a and b
occupy c’s and d’s positions. A naive definition of this function would be
swapSyms (swapSyms t a c) b d, where swapSyms exchanges two symbols.
This naive definition fails in the face of aliasing: If a = d, but b 6= c, then
swapFourSyms a b c d would leave a in b’s position.

The following lemma about swapSyms captures the intuition that in order
to minimize the cost, more frequent symbols should be encoded using fewer
bits than less frequent ones:

Lemma 13.1. consistent t ^ a 2 alphabet t ^ b 2 alphabet t ^ freq t a
� freq t b ^ depth t a � depth t b �! cost (swapSyms t a b) � cost t

Given a symbol a, the mergeSibling function transforms the tree

158 13 Huffman’s Algorithm

a b

into

a

The frequency of a in the resulting tree is the sum of the original frequencies
of a and b. The function is defined by the equations

mergeSibling (Leaf w b b) a = Leaf w b b
mergeSibling (Node w (Leaf w b b) (Leaf w c c)) a
= (if a = b _ a = c then Leaf (w b + w c) a

else Node w (Leaf w b b) (Leaf w c c))
mergeSibling (Node w t1 t2) a
= Node w (mergeSibling t1 a) (mergeSibling t2 a)

The defining equations are applied sequentially: The third equation is appli-
cable only if the second one does not match.

The sibling function returns the label of the node that is the (left or right)
sibling of the node labeled with the given symbol a in tree t. If a is not in t’s
alphabet or it occurs in a node with no sibling leaf, we simply return a. This
gives us the nice property that if t is consistent, then sibling t a 6= a if and
only if a has a sibling. The definition, which is omitted here, distinguishes
the same cases as mergeSibling.

Using the sibling function, we can state that merging two sibling leaves
with weights wa and wb decreases the cost by wa + wb:

Lemma 13.2. consistent t ^ sibling t a 6= a �! cost (mergeSibling t a)
+ freq t a + freq t (sibling t a) = cost t

The splitLeaf function undoes the merging performed by mergeSibling :
Given two symbols a, b and two frequencies wa, wb, it transforms

a

into

a b

13.6 The Key Lemmas and Theorems 159

In the resulting tree, a has frequency wa and b has frequency wb. We normally
invoke splitLeaf with wa and wb such that freq t a =wa +wb. The definition
follows:

splitLeaf (Leaf w c c) wa a w b b
= (if c = a then Node w c (Leaf wa a) (Leaf w b b) else Leaf w c c)
splitLeaf (Node w t1 t2) wa a w b b
= Node w (splitLeaf t1 wa a w b b) (splitLeaf t2 wa a w b b)

Splitting a leaf with weight wa + wb into two sibling leaves with weights
wa and wb increases the cost by wa + wb:

Lemma 13.3. consistent t ^ a 2 alphabet t ^ freq t a = wa + w b �!
cost (splitLeaf t wa a w b b) = cost t + wa + w b

Finally, the minima predicate expresses that two symbols a, b have the
lowest frequencies in the tree t and that freq t a � freq t b:

minima t a b
= (a 2 alphabet t ^ b 2 alphabet t ^ a 6= b ^

(8 c2alphabet t :
c 6= a �! c 6= b �! freq t a � freq t c ^ freq t b � freq t c))

13.6 The Key Lemmas and Theorems

It is easy to prove that the tree returned by Huffman’s algorithm preserves
the alphabet, consistency, and symbol frequencies of the original forest:

ts 6= [] �! alphabet (huffman ts) = alphabetF ts

consistentF ts ^ ts 6= [] �! consistent (huffman ts)

ts 6= [] �! freq (huffman ts) a = freqF ts a

The main difficulty is to prove the optimality of the tree constructed by Huff-
man’s algorithm. We need three lemmas before we can present the optimality
theorem.

First, if a and b are minima, and c and d are at the very bottom of the
tree, then exchanging a and b with c and d does not increase the tree’s cost.
Graphically, we have

160 13 Huffman’s Algorithm

cost

c

d
a b

� cost

a

b
c d

Lemma 13.4. consistent t ^ minima t a b ^ c 2 alphabet t ^ d 2 alphabet
t ^ depth t c = height t ^ depth t d = height t ^ c 6= d �! cost
(swapFourSyms t a b c d) � cost t

Proof. The proof is by case distinctions on a = c, a = d, b = c, and b = d.
The cases are easy to prove by expanding the definition of swapFourSyms
and applying Lemma 13.1. ut

The tree splitLeaf t wa a wb b is optimum if t is optimum, under a few
assumptions, notably that a and b are minima of the new tree and that
freq t a = wa + wb. Graphically:

optimum

a

=) optimum

a b

Lemma 13.5. consistent t ^ optimum t ^ a 2 alphabet t ^ b =2 alphabet
t ^ freq t a = wa + w b ^ (8 c2alphabet t : wa � freq t c ^ w b � freq t c)
�! optimum (splitLeaf t wa a w b b)

Proof. We assume that t’s cost is less than or equal to that of any other
comparable tree v and show that splitLeaf t wa a w b b has a cost less than
or equal to that of any other comparable tree u. For the nontrivial case where
height t > 0, it is easy to prove that there must be two symbols c and d
occurring in sibling nodes at the very bottom of u. From u we construct the
tree swapFourSyms u a b c d in which the minima a and b are siblings:

a b

?

13.6 The Key Lemmas and Theorems 161

The question mark reminds us that we know nothing specific about u’s struc-
ture. Merging a and b gives a tree comparable with t, which we can use to
instantiate v:

cost (splitLeaf t a wa b w b) = cost t + wa + w b by Lemma 13.3
� cost (mergeSibling (swapFourSyms u a b c d) a) + wa + w b

by optimality assumption
= cost (swapFourSyms u a b c d) by Lemma 13.2
� cost u by Lemma 13.4 ut
An important property of Huffman’s algorithm is that once it has com-

bined two lowest-weight trees using uniteTrees, it does not visit these trees
ever again. This suggests that splitting a leaf node before applying the algo-
rithm should give the same result as applying the algorithm first and splitting
the leaf node afterward.

Lemma 13.6. consistentF ts ^ ts 6= [] ^ a 2 alphabetF ts ^ freqF ts a
= wa + w b �! splitLeaf (huffman ts) wa a w b b = huffman (splitLeaf F
ts wa a w b b)

The proof is by straightforward induction on the length of the forest ts.
As a consequence of this commutativity lemma, applying Huffman’s algo-

rithm on a forest of the form

c
wc

a
wa

b
wb

d
wd

z
wz

� � �

gives the same result as applying the algorithm on the “flat” forest

c
wc

a
wa+wb

d
wd

z
wz

� � �

followed by splitting the leaf node a into two nodes a and b with frequencies
wa, wb. The lemma effectively provides a way to flatten the forest at each step
of the algorithm.

This leads us to our main result.

Theorem 13.7. consistentF ts ^ heightF ts = 0 ^ sortedByWeight ts ^
ts 6= [] �! optimum (huffman ts)

Proof. The proof is by induction on the length of ts. The assumptions ensure
that ts is of the form

162 13 Huffman’s Algorithm

a
wa

b
wb

c
wc

d
wd

z
wz

� � �

with wa � wb � wc � wd � � � � � wz. If ts consists of a single node, the node
has cost 0 and is therefore optimum. If ts has length 2 or more, the first step
of the algorithm leaves us with a term such as

huffman

c
wc

a
wa

b
wb

d
wd

z
wz

� � �

In the diagram, we put the newly created tree at position 2 in the forest; in
general, it could be anywhere. By Lemma 13.6, the above tree equals

splitLeaf

huffman c

wc

a
wa+wb

d
wd

z
wz

� � �

!
wa a wb b

To prove that this tree is optimum, it suffices by Lemma 13.5 to show that

huffman c
wc

a
wa+wb

d
wd

z
wz

� � �

is optimum, which follows from the induction hypothesis. ut

In summary, we have established that the huffman program, which con-
stitutes a functional implementation of Huffman’s algorithm, constructs a
binary tree that represents an optimal binary code for the specified alphabet
and frequencies.

Part III

Priority Queues

14

Priority Queues

A priority queue of linearly ordered elements is like a multiset where one
can insert arbitrary elements and remove minimal elements. Its specification
as an ADT is show in Figure 14.1 where Min_mset m � Min (set_mset
m) and Min yields the minimal element of a finite set of linearly ordered
elements.

ADT Priority_Queue =

interface
empty :: 0q
insert :: 0a) 0q) 0q
del_min :: 0q) 0q
get_min :: 0q) 0a

abstraction mset :: 0q) 0a multiset
invariant invar :: 0q) bool

specification
invar empty (empty-inv)
mset empty = {{}} (empty)

invar q �! invar (insert x q) (insert-inv)
invar q �! mset (insert x q) = mset q + {{x}} (insert)

invar q ^ mset q 6= {{}} �! invar (del_min q) (del_min-inv)
invar q ^ mset q 6= {{}}�!
mset (del_min q) = mset q � {{get_min q}} (del_min)

invar q ^ mset q 6= {{}} �! get_min q = Min_mset (mset q) (get_min)

Fig. 14.1. ADT Priority_Queue

Mergeable priority queues (see Figure 14.2) provide an additional function
merge (sometimes: meld or union) with the obvious functionality.

166 14 Priority Queues

ADT Priority_Queue_Merge = Priority_Queue +

interface
merge :: 0q) 0q) 0q

specification
invar q1 ^ invar q2 �! invar (merge q1 q2)

invar q1 ^ invar q2 �! mset (merge q1 q2) = mset q1 + mset q2

Fig. 14.2. ADT Priority_Queue_Merge

Our priority queues are simplified. The more general version contains el-
ements that are pairs of some item and its priority. In that case a priority
queue can be viewed as a set, but because we have dropped the item we need
to view a priority queue as a multiset. In imperative implementations, priority
queues frequently also provide an operation decrease_key : given some direct
reference to an element in the priority queue, decrease the element’s priority.
This is not completely straightforward in a functional language. Lammich and
Nipkow [45] present an implementation, a Priority Search Tree.

Exercise 14.1. Give a list-based implementation of mergeable priority queues
with constant-time get_min and del_min. Verify the correctness of your im-
plementation w.r.t. Priority_Queue_Merge.

14.1 Heaps

A popular implementation technique for priority queues are heaps, i.e. trees
where the minimal element in each subtree is at the root:

heap :: 0a tree) bool

heap hi = True
heap hl ; m ; ri
= ((8 x2set_tree l [set_tree r : m � x) ^ heap l ^ heap r)

Function mset_tree extracts the multiset of elements from a tree:

mset_tree :: 0a tree) 0a multiset

mset_tree hi = {{}}
mset_tree hl ; a ; ri = {{a}} + mset_tree l + mset_tree r

14.1 Heaps 167

When verifying a heap-based implementation of priority queues the invari-
ant invar and the abstraction function mset in the ADT Priority_Queue
are instantiated by heap and mset_tree. The correctness proofs need to talk
about both multisets and (because of the heap invariant) sets of elements in
a heap. We will only show the relevant multiset properties because the set
properties follow easily via set_mset (mset_tree t) = set_tree t.

Both empty and get_min have obvious implementations:

empty = hi

get_min = value

where value h_; a ; _i = a. If a heap-based implementation provides a merge
function (e.g. skew heaps in Chapter 22), then insert and del_min can be
defined like this:

insert x t = merge hhi; x ; hii t

del_min hi = hi
del_min hl ; _; ri = merge l r

Note that the following tempting definition of merge is functionally correct
but leads to very unbalanced heaps:

merge hi t = t
merge t hi = t
merge (hl1; a1; r1i =: t1) (hl2; a2; r2i =: t2)
= (if a1 � a2 then hl1; a1; merge r1 t2i else hl2; a2; merge t1 r2i)
Many of the more advanced implementations of heaps focus on improving

this merge function. We will see examples of this in the next chapter on leftist
heaps, as well as in the chapters on skew heaps and pairing heaps.

Exercise 14.2. Show functional correctness of the above definition of merge
(w.r.t. Priority_Queue_Merge) and prove functional correctness of the im-
plementations of insert and del_min (w.r.t. Priority_Queue).

Bibliographic Remarks

The idea of the heap goes back to Williams [77] who also coined the name.

15

Leftist Heaps

Leftist heaps are heaps in the sense of Section 14.1 and implement mergeable
priority queues. The key idea is to maintain the invariant that at each node
the minimal height of the right child is � that of the left child. We represent
leftist heaps as augmented trees that store the minimal height in every node:

type_synonym 0a lheap = (0a � nat) tree

mht :: 0a lheap) nat

mht hi = 0

mht h_; (_; n); _i = n

There are two invariants: the standard heap invariant (on augmented trees)

heap :: (0a � 0b) tree) bool

heap hi = True
heap hl ; (m ; _); ri
= ((8 x2set_tree l [set_tree r : m � x) ^ heap l ^ heap r)

and the structural leftist tree invariant that requires that the minimal height
of the right child is no bigger than that of the left child (and that the minimal
height information in the node is correct):

ltree :: 0a lheap) bool

ltree hi = True
ltree hl ; (_; n); ri
= (mh r � mh l ^ n = mh r + 1 ^ ltree l ^ ltree r)

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Leftist_Heap.html

170 15 Leftist Heaps

Thus a tree is a leftist tree if for every subtree a shortest path from the root
to a leaf is the right spine of the subtree. Remember 2mh t � jt j1. Thus the
minimal height is upperbounded by the logarithm of the number of leaves.
Because the expensive operations below descend along the right spine, this
means that their running time is logarithmic in the number of leaves.

15.1 Implementation of ADT Priority_Queue_Merge

The key operation is merge :

merge :: 0a lheap) 0a lheap) 0a lheap

merge hi t = t
merge t hi = t
merge (hl1; (a1; n1); r1i =: t1) (hl2; (a2; n2); r2i =: t2)
= (if a1 � a2 then node l1 a1 (merge r1 t2)

else node l2 a2 (merge t1 r2))

node :: 0a lheap) 0a) 0a lheap) 0a lheap

node l a r
= (let rl = mht l ; rr = mht r

in if rr � rl then hl ; (a ; rr + 1); ri else hr ; (a ; rl + 1); li)

Termination of merge can be proved either by the sum of the sizes of the two
arguments (which goes down with every call) or by the lexicographic product
of the two size measures: either the first argument becomes smaller or it stays
unchanged and the second argument becomes smaller.

As shown in Section 14.1, once we have merge, the other operations are
easily definable. We repeat their definitions simply because this chapter em-
ploys augmented rather than ordinary trees:

empty :: 0a lheap

empty = hi

get_min :: 0a lheap) 0a

get_min h_; (a ; _); _i = a

insert :: 0a) 0a lheap) 0a lheap

insert x t = merge hhi; (x ; 1); hii t

15.2 Correctness 171

del_min :: 0a lheap) 0a lheap

del_min hi = hi
del_min hl ; _; ri = merge l r

15.2 Correctness

The above implementation is proved correct w.r.t. the ADT Priority_Queue_Merge
where

mset_tree :: (0a � 0b) tree) 0a multiset

mset_tree hi = {{}}
mset_tree hl ; (a ; _); ri = {{a}} + mset_tree l + mset_tree r

invar t = (heap t ^ ltree t)

Correctness of get_min follows directly from the heap invariant:

heap t ^ t 6= hi �! get_min t = Min (set_tree t)

From the following inductive lemmas about merge

mset_tree (merge t1 t2) = mset_tree t1 + mset_tree t2
ltree l ^ ltree r �! ltree (merge l r)

heap l ^ heap r �! heap (merge l r)

correctness of insert and del_min follow easily:

mset_tree (insert x t) = mset_tree t + {{x}}
mset_tree (del_min t) = mset_tree t � {{get_min t}}
ltree t �! ltree (insert x t)

heap t �! heap (insert x t)

ltree t �! ltree (del_min t)

heap t �! heap (del_min t)

Of course the above proof (ignoring the ltree part) works for any mergeable
priority queue implemented as a heap.

172 15 Leftist Heaps

15.3 Running Time Analysis

The running time functions are shown in Appendix B.4. By induction on the
computation of merge we obtain

ltree l ^ ltree r �! Tmerge l r � mh l + mh r + 1

With 2mh t � jt j1 it follows that

ltree l ^ ltree r �! Tmerge l r � lg jl j1 + lg jr j1 + 1 (15.1)

which implies logarithmic bounds for insertion and deletion:

ltree t �! Tinsert x t � lg jt j1 + 3

ltree t �! Tdel_min t � 2 � lg jt j1 + 1

The derivation of the bound for insertion is trivial but the one for deletion
uses a little lemma, assuming ltree t :

Tdel_min t = Tmerge l r + 1

� lg jl j1 + lg jr j1 + 2 using (15.1)
� 2 � lg jt j1 + 1 because lg x + lg y + 1 < 2 � lg (x + y)

if 0 < x and 0 < y

Bibliographic Remarks

Leftist heaps were invented by Crane [14]. Another version of leftist trees,
based on weight rather than height, was introduced by Cho and Sahni [12, 68].

16

Priority Queues via Braun Trees

In Chapter 11 we introduced Braun trees and showed how to implement ar-
rays. In the current chapter we show how to implement priority queues by
means of Braun trees. Because Braun trees have logarithmic height this guar-
antees logarithmic running times for insertion and deletion. Remember that
every node hl ; x ; ri in a Braun tree satisfies jl j 2 fjr j; jr j + 1g (�).

16.1 Implementation of ADT Priority_Queue

We follow the heap approach in Section 14.1. Functions empty, get_min,
heap and mset_tree are defined as in that section.

Insertion and deletion maintain the Braun tree property (�) by inserting
into the right (and possibly smaller) child, deleting from the left (and possibly
larger) child, and swapping children to reestablish (�).

Insertion is straightforward and clearly maintains both the heap and the
Braun tree property:

insert :: 0a) 0a tree) 0a tree

insert a hi = hhi; a ; hii
insert a hl ; x ; ri
= (if a < x then hinsert x r ; a ; li else hinsert a r ; x ; li)

To delete the minimal (i.e. root) element from a tree, extract the leftmost
element from the tree and let it sift down to its correct position in the tree in
the manner of heapsort:

https://devel.isa-afp.org/browser_info/current/AFP/Priority_Queue_Braun/Priority_Queue_Braun.html

174 16 Priority Queues via Braun Trees

del_min :: 0a tree) 0a tree

del_min hi = hi
del_min hhi; x ; ri = hi
del_min hl ; x ; ri = (let (y ; l 0) = del_left l in sift_down r y l 0)

del_left :: 0a tree) 0a � 0a tree

del_left hhi; x ; ri = (x ; r)
del_left hl ; x ; ri = (let (y ; l 0) = del_left l in (y ; hr ; x ; l 0i))

sift_down :: 0a tree) 0a) 0a tree) 0a tree

sift_down hi a _ = hhi; a ; hii
sift_down hhi; x ; _i a hi
= (if a � x then hhhi; x ; hii; a ; hii else hhhi; a ; hii; x ; hii)
sift_down (hl1; x 1; r1i =: t1) a (hl2; x 2; r2i =: t2)
= (if a � x 1 ^ a � x 2 then ht1; a ; t2i

else if x 1 � x 2 then hsift_down l1 a r1; x 1; t2i
else ht1; x 2; sift_down l2 a r2i)

In the first two equations for sift_down, the Braun tree property guarantees
that the “_” arguments must be empty trees if the pattern matches.

16.2 Correctness

We outline the correctness proofs for insert and del_min by presenting the
key lemmas. Correctness of insert is straightforward:

jinsert x t j = jt j + 1

mset_tree (insert x t) = {{x}} + mset_tree t

braun t �! braun (insert x t)

heap t �! heap (insert x t)

Correctness of del_min builds on analogous correctness lemmas for the
auxiliary functions:

del_left t = (x ; t 0) ^ t 6= hi �! mset_tree t = {{x}} + mset_tree t 0

del_left t = (x ; t 0) ^ t 6= hi ^ heap t �! heap t 0

del_left t = (x ; t 0) ^ t 6= hi �! jt j = jt 0j + 1

del_left t = (x ; t 0) ^ t 6= hi ^ braun t �! braun t 0

16.2 Correctness 175

braun hl ; a ; ri �! jsift_down l a r j = jl j + jr j + 1

braun hl ; a ; ri �! braun (sift_down l a r)

braun hl ; a ; ri �!
mset_tree (sift_down l a r) = {{a}} + (mset_tree l + mset_tree r)

braun hl ; a ; ri ^ heap l ^ heap r �! heap (sift_down l a r)

braun t �! braun (del_min t)

heap t ^ braun t �! heap (del_min t)

braun t �! jdel_min t j = jt j � 1

braun t ^ t 6= hi �!
mset_tree (del_min t) = mset_tree t � {{get_min t}}

Bibliographic Remarks

Our implementation of priority queues via Braun trees is due to Paulson [64]
who credits it to Okasaki.

17

Binomial Heaps

Binomial heaps are another common implementation of mergeable priority
queues, which supports efficient (O(logn)) insert, get_min, del_min, and
merge operations.

The basic building blocks of a binomial heap are binomial trees, which
are defined recursively as follows. A binomial tree of rank r is a node with r
children of ranks r � 1; : : : ; 0, in that order. Figure 17.1 shows an example
binomial tree.

3

2

1

0

0

1

0

0

Fig. 17.1. A binomial tree of rank 3. The node labels depict the rank of each node.
A node of rank r has child nodes of ranks r � 1; : : : ; 0.

To define binomial trees in Isabelle, we first define a more general datatype:

datatype 0a tree = Node nat 0a (0a tree list)

Apart from the list of children, a node stores a rank and an element. As usual,
we use a shortcut notation for nodes:

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Binomial_Heap.html

178 17 Binomial Heaps

hr ; x ; tsi � Node r x ts

This datatype contains all binomial trees, but also some non-binomial
trees. To carve out the binomial trees, we define an invariant, which reflects
the informal definition above:

invar_btree :: 0a tree) bool

invar_btree hr ; _; tsi
= ((8 t2set ts : invar_btree t) ^ map rank ts = rev [0::<r])

Additionally, we require the heap property, i.e., that the root element of
each subtree is a minimal element in that subtree:

invar_otree :: 0a tree) bool

invar_otree h_; x ; tsi = (8 t2set ts : invar_otree t ^ x � root t)

Thus, a binomial tree is a tree that satisfies both the structural and the
heap invariant. The two invariants are combined in a single predicate:

invar_tree :: 0a tree) bool

invar_tree t = (invar_btree t ^ invar_otree t)

A binomial heap is a list of binomial trees with strictly ascending rank:

type_synonym 0a heap = 0a tree list

invar :: 0a heap) bool

invar ts
= ((8 t2set ts : invar_tree t) ^ sorted_wrt (<) (map rank ts))

Note that sorted_wrt states that a list is sorted wrt. the specified relation,
here (<). It is defined in Appendix A.

17.1 Size

The following functions return the multiset of elements in a binomial tree and
in a binomial heap:

17.2 Implementation of ADT Priority_Queue 179

mset_tree :: 0a tree) 0a multiset

mset_tree h_; a ; tsi = {{a}} +
P

#
(image_mset mset_tree (mset ts))

mset_heap :: 0a heap) 0a multiset

mset_heap ts =
P

#
(image_mset mset_tree (mset ts))

Most operations on binomial heaps are linear in the length of the heap.
To show that the length is bounded by the number of heap elements, we first
observe that the number of elements in a binomial tree is already determined
by its rank. A binomial tree of rank r has 2r nodes:

invar_btree t �! jmset_tree t j = 2rank t

This property is proved by induction on the tree structure. A tree of rank
0 has one element, and a tree of rank r+1 has subtrees of rank 0; 1; : : : ; r.
By the induction hypothesis, these have 20; 21; : : : ; 2r elements, i.e., 2r+1 � 1

elements together. Including the element at the root, there are 2r+1 elements.
The length of a binomial heap is bounded logarithmically in the number

of its elements:

invar ts �! jts j � lg (jmset_heap ts j + 1)

To prove this, recall that the heap ts is strictly sorted by rank. Thus, we can
underestimate the ranks of the trees in ts by 0; 1; : : : ; jtsj � 1. This means
that they must have at least 20; 21; : : : ; 2jtsj�1 elements, i.e., at least 2jtsj � 1

elements together, which yields the desired bound.

17.2 Implementation of ADT Priority_Queue

17.2.1 Empty and Emptiness Test

Obviously, the empty list is a binomial heap with no elements, and a binomial
heap is empty only if it is the empty list:

invar []

mset_heap [] = {{}}
(mset_heap ts = {{}}) = (ts = [])

17.2.2 Insertion

A crucial property of binomial trees is that we can link two binomial trees of
rank r to form a binomial tree of rank r + 1, simply by prepending one tree

180 17 Binomial Heaps

as the first child of the other. To preserve the heap property, we add the tree
with the bigger root element below the tree with the smaller root element.
This linking of trees is illustrated in Figure 17.2. Formally:

link :: 0a tree) 0a tree) 0a tree

link (hr ; x 1; ts1i =: t1) (hr 0; x 2; ts2i =: t2)
= (if x 1 � x 2 then hr + 1; x 1; t2 # ts1i else hr + 1; x 2; t1 # ts2i)

Fig. 17.2. Linking two binomial trees of rank 2 to form a binomial tree of rank 3,
by linking the left tree as first child of the right tree, as indicated by the dashed
line. We assume that the root element of the left tree is greater than or equal to the
root element of the right tree, such that the heap property is preserved.

By case distinction, we can easily prove that link preserves the invariant
and that the resulting tree contains the elements of both arguments.

invar_tree t1 ^ invar_tree t2 ^ rank t1 = rank t2 �!
invar_tree (link t1 t2)

mset_tree (link t1 t2) = mset_tree t1 + mset_tree t2

The link operation forms the basis of inserting a tree into a heap: if the
heap does not contain a tree with the same rank, we can simply insert the tree
at the correct position in the heap. Otherwise, we merge the two trees and
recursively insert the result. For our purposes, we can additionally assume
that the rank of the tree to be inserted is smaller than or equal to the lowest
rank in the heap, which saves us a case in the following definition:

ins_tree :: 0a tree) 0a heap) 0a heap

ins_tree t [] = [t]
ins_tree t1 (t2 # ts)
= (if rank t1 < rank t2 then t1 # t2 # ts

17.2 Implementation of ADT Priority_Queue 181

else ins_tree (link t1 t2) ts)

By straightforward induction, and using the respective properties for link,
we can show that ins_tree preserves the invariant and yields a heap with the
expected elements:

invar_tree t ^ invar ts ^ (8 t 02set ts : rank t � rank t 0) �!
invar (ins_tree t ts)

mset_heap (ins_tree t ts) = mset_tree t + mset_heap ts

A single element is inserted as a one-element (rank 0) tree:

insert :: 0a) 0a heap) 0a heap

insert x ts = ins_tree h0; x ; []i ts

The above definition meets the specification for insert required by the
Priority_Queue ADT:

invar t �! invar (insert x t)

mset_heap (insert x t) = {{x}} + mset_heap t

17.2.3 Merging

Recall the merge algorithm used in top-down merge sort (Section 2.4). It
merges two sorted lists by repeatedly taking the smaller list head. We use a
similar idea for merging two heaps: if the rank of one list’s head is strictly
smaller, we choose it. If both ranks are equal, we link the two heads and insert
the resulting tree into the merged remaining heaps. Thus, the resulting heap
will be strictly ordered by rank. Formally:

merge :: 0a heap) 0a heap) 0a heap

merge ts1 [] = ts1
merge [] (v # va) = v # va
merge (t1 # ts1 =: h1) (t2 # ts2 =: h2)

= (if rank t1 < rank t2 then t1 # merge ts1 h2

else if rank t2 < rank t1 then t2 # merge h1 ts2
else ins_tree (link t1 t2) (merge ts1 ts2))

The merge function can be regarded as an algorithm for adding two sparse
binary numbers. This intuition is explored in Exercise 17.2.

182 17 Binomial Heaps

We show that the merge operation preserves the invariant and unites the
elements:

invar ts1 ^ invar ts2 �! invar (merge ts1 ts2)

mset_heap (merge ts1 ts2) = mset_heap ts1 + mset_heap ts2

The proof is straightforward, except for preservation of the binomial heap
invariant. We first show that merging two heaps does not decrease the lowest
rank in these heaps. This ensures that prepending the head with smaller
rank to the merged remaining heaps results in a sorted heap. Moreover, when
we link two heads of equal rank, this ensures that the linked tree’s rank is
smaller than or equal to the ranks in the merged remaining trees, as required
by the ins_tree function. We phrase this property as preservation of lower
rank bounds, i.e., a lower rank bound of both heaps is still a lower bound for
the merged heap:

t 0 2 set (merge ts1 ts2) ^ (8 t12set ts1: rank t < rank t1) ^
(8 t22set ts2: rank t < rank t2) �!
rank t < rank t 0

The proof is by straightforward induction, relying on an analogous bound-
ing lemma for ins_tree.

17.2.4 Finding a Minimal Element

For a binomial tree, the root node always contains a minimal element. Unfor-
tunately, there is no such property for the whole heap—the minimal element
may be at the root of any of the heap’s trees. To get a minimal element from
a non-empty heap, we look at all root nodes:

get_min :: 0a heap) 0a

get_min [t] = root t
get_min (t # v # va) = min (root t) (get_min (v # va))

Correctness of this operation is proved by a simple induction:

mset_heap ts 6= {{}} ^ invar ts �!
get_min ts = Min_mset (mset_heap ts)

17.2.5 Deleting a Minimal Element

To delete a minimal element, we first need to find one and then remove it.
Removing the root node of a tree with rank r leaves us with a list of its

17.3 Running Time Analysis 183

children, which are binomial trees of ranks r � 1; : : : ; 0. Reversing this list
yields a valid binomial heap, which we merge with the remaining trees in the
original heap:

del_min :: 0a heap) 0a heap

del_min ts
= (case get_min_rest ts of (h_; _; ts1i; ts2)) merge (rev ts1) ts2)

Here, the auxiliary function get_min_rest splits a heap into a tree with min-
imal root element, and the remaining trees.

get_min_rest :: 0a heap) 0a tree � 0a heap

get_min_rest [t] = (t ; [])
get_min_rest (t # v # va)
= (let (t 0; ts 0) = get_min_rest (v # va)

in if root t � root t 0 then (t ; v # va) else (t 0; t # ts 0))

We prove that, for a non-empty heap, del_min preserves the invariant and
deletes the minimal element:

ts 6= [] ^ invar ts �! invar (del_min ts)

ts 6= [] �! mset_heap ts = mset_heap (del_min ts) + {{get_min ts}}

The proof is straightforward. For invariant preservation, the key is to show
that get_min_rest returns a binomial tree and a binomial heap:

get_min_rest ts = (t 0; ts 0) ^ ts 6= [] ^ invar ts �! invar_tree t 0

get_min_rest ts = (t 0; ts 0) ^ ts 6= [] ^ invar ts �! invar ts 0

To show that we actually remove a minimal element, we show that
get_min_rest selects the same tree as get_min :

ts 6= [] ^ get_min_rest ts = (t 0; ts 0) �! root t 0 = get_min ts

17.3 Running Time Analysis

The running time functions are shown in Appendix B.5. Intuitively, the op-
erations are linear in the length of the heap, which in turn is logarithmic in
the number of elements (cf. Section 17.1).

The running time analysis for insert is straightforward. The running time
is dominated by ins_tree. In the worst case, it iterates over the whole heap,
taking constant time per iteration. By straightforward induction, we show

184 17 Binomial Heaps

Tins_tree t ts � jts j + 1

and thus

invar ts �! Tinsert x ts � lg (jmset_heap ts j + 1) + 2

The running time analysis for merge is more interesting. In each recursion,
we need constant time to compare the ranks. However, if the ranks are equal,
we link the trees and insert them into the merger of the remaining heaps.
In the worst case, this costs linear time in the length of the merger. A naive
analysis would estimate jmerge ts1 ts2j � jts1j + jts2j, and thus yield a
quadratic running time in the length of the heap.

However, we can do better: we observe that every link operation in
ins_tree reduces the number of trees in the heap. Thus, over the whole merge,
we can only have linearly many link operations in the combined size of both
heaps.

To formalize this idea, we estimate the running time of ins_tree and merge
together with the length of the result:

Tins_tree t ts + jins_tree t ts j = 2 + jts j
jmerge ts1 ts2j + Tmerge ts1 ts2 � 2 � (jts1j + jts2j) + 1

Both estimates can be proved by straightforward induction, and from the
second estimate we easily derive a bound for merge :

invar ts1 ^ invar ts2 �!
Tmerge ts1 ts2 � 4 � lg (jmset_heap ts1j + jmset_heap ts2j + 1) + 1

From the bound for merge, we can easily derive a bound for del_min :

invar ts ^ ts 6= [] �! Tdel_min ts � 6 � lg (jmset_heap ts j + 1) + 3

The only notable point is that we use a linear time bound for reversing a list,
as explained in Section 1.5.1:

Trev :: 0a list) nat

Trev xs = jxs j + 1

17.4 Exercises

Exercise 17.1. A node in a tree is on level n if it needs n edges from the
root to reach it. Define a function nol ::nat) 0a tree) nat such that nol
n t is the number of nodes on level n in tree t and show that a binomial tree
of rank r has

�
r

l

�
nodes on level l:

invar_btree t �! nol l t = rank t choose l

17.4 Exercises 185

Hint: You might want to prove separately that

i<rX
i=0

�
i

n

�
=

�
r

n+ 1

�

Exercise 17.2. Sparse binary numbers represent a binary number by a list
of the positions of set bits, sorted in ascending order. Thus, the list [1; 3; 4]

represents the number 11010. In general, [p1; : : : ; pn] represents 2p1+� � �+2pn .
Implement sparse binary numbers in Isabelle, using the type nat list.

1. Define a function invar :: nat list) bool that checks for strictly ascend-
ing bit positions, a function num_of :: nat list) nat that converts a
sparse binary number to a natural number, and a function add :: nat list
) nat list) nat list to add sparse binary numbers.

2. Show that your add function preserves the invariant and actually performs
addition as far as num_of is concerned.

3. Define a running time function for add and show that it is linear in the
list size.

Hint: The bit positions in sparse binary numbers are analogous to binomial
trees of a certain rank in a binomial heap. The add function is implemented
similar to the merge function, using a carry function to insert a bit position
into a number (similar to ins_tree). Correctness and running time can be
proved similarly.

Bibliographic Remarks

Binomial queues were invented by Vuillemin [75]. Functional implementations
were given by King [40] and Okasaki [62]. A functional implementation was
verified by Meis et al. [49]; a Java implementation, by Müller [51].

Part IV

Advanced Design and Analysis Techniques

18

Dynamic Programming

You probably have seen this function before:

fib :: nat) nat

fib 0 = 0

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n

It computes the well-known Fibonacci numbers. You may also have noticed
that calculating fib 50 already causes quite some stress for your computer and
there is no hope for fib 500 to ever return a result.

This is quite unfortunate considering that there is a very simple imperative
program to compute these numbers efficiently:

int fib(n) {
int a = 0;
int b = 1;
for (i in 1..n) {

int temp = b;
b = a + b;
a = temp;

}
return a;

}

So we seem to be caught in a desperate situation here: either we use a
clear and elegeant definition of fib or we get an efficient but convoluted im-
plementation for fib. Admittedly, we could just prove that both formulations

190 18 Dynamic Programming

are the same function, and use whichever one is more suited for the task at
hand. However, doing this for all recursive functions we would like to define
is a tedious task. Instead, this chapter will sketch a recipe that allows to de-
fine such recursive functions in the natural way, while still getting an efficient
implementation “for free”.

18.1 Memoization

Let us consider the tree of recursive calls that are issued when computing fib 5

(c.f. Fig. 18.1). We can see that the subtree for fib 3 is recomputed two times,

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

Fig. 18.1. Tree of the recursive call structure for fib 5

and that the subtree for fib 2 is even recomputed three times. How can we
avoid these unnecessary computations? A common solution is memoization :
we store previous computation results in some kind of memory and consult
it to potentially recall a memoized result before issuing another recursive
computation. Here is a memoizing version of fib that implements the memory
as a mapping of type nat) nat option :

fib1 :: nat) (nat) nat option)) nat � (nat) nat option)

fib1 0 m = (0; m(0 7! 0))

fib1 1 m = (1; m(1 7! 1))

fib1 (n + 2) m
= (let (a ; m) = case m n of None) fib1 n m j Some a) (a ; m);

(b; m) =

case m (n + 1) of None) fib1 (n + 1) m

18.1 Memoization 191

j Some a) (a ; m)

in (a + b; m(n + 2 7! a + b)))

And indeed, we can ask Isabelle to compute fib1 50 or even fib1 500 and we
get the result within a split second.

However, we are not yet happy with this code. Carrying the memory
around means a lot of additional weight for the definition of fib1, and proving
that this function computes the same value as fib is not completely trivial
(how would you approach this?). Let us streamline the definition first by
pulling out the reading and writing of memory into a function memo:

memo ::
0k) ((0k) 0v option)) 0v � (0k) 0v option))

) (0k) 0v option)) 0v � (0k) 0v option)

memo n f m �
case m n of None) let (a ; m) = f m in (a ; m(n 7! a))
j Some a) (a ; m)

fib2 :: nat) (nat) nat option)) nat � (nat) nat option)

fib2 0 = memo 0 (Pair 0)

fib2 1 = memo 1 (Pair 1)

fib2 (n + 2)

= memo (n + 2)

(�m : let (a ; m) = fib2 n m ; (b; y) = fib2 (n + 1) m in (a + b; y))

This already looks a lot more like the original definition but it still has one
problem: we have to thread the memory through the program explicitly. This
can be become rather tedious for more complicated programs and diverges
from the original shape of the program, rendering proofs harder.

18.1.1 Enter the Monad

Let us examine the type of fib2 more closely. We can read it as the type of
a function that, given a natural number, returns a computation. Given an
initial memory, it computes a pair of a result and an updated memory. We
can capture this notion of “stateful” computations in a data type:

datatype (0s ; 0a) state = State (0s) 0a � 0s)

192 18 Dynamic Programming

A value of (0s ; 0a) state represents a stateful computation that re-
turns a result of type 0a and operates on states of type 0s. The constant
run_state forces the evaluation of a computation starting from some initial
state: run_state (State a) s = a s. The advantage of this definition may not
seem immediate. It only starts to shine when we see how it allows us to chain
stateful computations. To do so, we only need to define two constants: return
to pack up a result in a computation, and bind to chain two computations
after each other.

return :: 0a) (0s ; 0a) state

return x � State (�s : (x ; s))

bind :: (0s ; 0a) state) (0a) (0s ; 0b) state)) (0s ; 0b) state

bind a f � State (�s : let (x ; s) = run_state a s in run_state (f x) s)

We add a little syntax on top and write hhx ii for return x, and a >>= f instead
of bind a f. The “identity” computation hhx ii simply leaves the given state
unchanged and produces x as a result. The chained computation a >>= f
starts with some state s, runs a on it to produce a pair of a result x and new
state s 0, and then evaluates f x to produce another computation that is run
on s 0.

We have now seen how to pass state around but we are not yet able to
interact with it. For this purpose we define get and set to retrieve and update
the current state, respectively:

get :: (0s ; 0s) state

get = State (�s : (s ; s))

set :: 0s) (0s ; unit) state

set s 0 = State (�_: ((); s 0))

Let us reformulate fib2 with the help of these concepts:

memo1 ::
0a) (0a) 0b option ; 0b) state

) (0a) 0b option ; 0b) state

memo1 n f �
get >>=

(�m : case m n of None) f >>= (�a : set (m(n 7! a)) >>= (�_: hhaii))

18.1 Memoization 193

j Some x) hhx ii)

fib3 :: nat) (nat) nat option ; nat) state

fib3 0 = hh0ii
fib3 1 = hh1ii
fib3 (n + 2)

= memo1 (n + 2) (fib3 n >>= (�a : fib3 (n + 1) >>= (�b: hha + bii)))

Can you see how we have managed to hide the whole handling of state behind
the scenes? The only explicit interaction with the state is now happening
inside of memo1. This is sensible as this is the only place where we really
want to recall a memoized result or to write a new value to memory.

While this is great, we still want to apply one more batch of polish: the
syntactic structure of the last case of fib3 still does not match fib exactly. To
this end, we lift function application f x to the state monad:

(:) :: (0s ; 0a) (0s ; 0b) state) state) (0s ; 0a) state) (0s ; 0b) state

f T : xT � f m >>= (�f : xm >>= (�x : f x))

We can now spell out our final memoizing version of fib:

fib4 :: nat) (nat) nat option ; nat) state

fib4 0 = hh0ii
fib4 1 = hh1ii
fib4 (n + 2)

= memo1 (n + 2) (hh�a : hh�b: hha + biiiiii : (fib4 n) : (fib4 (n + 1)))

You may wonder why we added that many additional computations in
this last step. On the one hand, we have gained the advantage that we can
now strictly follow the syntactic structure of fib to prove that fib4 is correct.
On the other hand, we can remove most of these additional computations in
a final post-processing step.

18.1.2 Memoization and Dynamic Programming

Let us recap what we have seen above in this chapter. We noticed that the
naive recursive formulation of the Fibonacci numbers leads to an highly inef-
ficient implementation. We then showed how to work around this problem by

194 18 Dynamic Programming

using memoization to obtain a structurally similar but provably equivalent
efficient implementation. After all this, you may wonder why this chapter is
titled Dynamic Programming and not Memoization.

Dynamic programming relies on two main principles. First, to find an
optimal solution for a problem by computing it from optimal solutions for
“smaller” instances of the same problem, i.e., recursion. Second, to memoize
these solutions for smaller problems in, e.g., a table. Thus we could be bold
and state:

dynamic programming = recursion + memoization

For the remainder of this chapter, we will first outline how to prove that
fib4 is correct. Then, we will sketch how to apply our approach of memoization
beyond fib. Afterwards, we will study some prototypical examples of dynamic
programming problems and show how to apply above formula to them.

18.2 Correctness of Memoization

We now want to prove that fib4 is correct. But what is it exactly that we
want to prove? We surely want fib4 to produce the same result as fib when
run with an empty memory (where empty = (�_: None)):

fst (run_state (fib4 n) empty) = fib n

If we just wanted to hammer away at this prove, we would probably start
with an induction on the computation of fib just to realize that the induction
hypotheses are not strong enough to prove the recursion case, since they
demand an empty memory. We can counter by applying generalization:

fst (run_state (fib4 n) m) = fib n

However, this statement does not hold anymore for every memory m.
What do we need to demand from m? It should only memoize values that

are consistent with fib:

cmem m � 8n2dom m : m n = Some (fib n)

Using this, we can formulate a general notion of equivalence between a value v
and its memoized version a, written v . a : starting from a consistent memory
m, a should produce another consistent memory m 0, and the result v.

(.) :: 0a) (nat) nat option ; 0a) state) bool

v . s �
8m : cmem m �!

(let (v 0; m 0) = run_state s m in v = v 0 ^ cmem m 0)

18.2 Correctness of Memoization 195

Thus we want to prove

fib n . fib4 n

via computation induction on n as above. For the base cases we need to
prove statements of the form v . hvi, a property which follows trivially after
unfolding the involved definitions. For the induction case, we can unfold fib4
(n + 2), and get rid of memo1 by applying the following rule:

fib n . a �! fib n . memo1 n a

For the remainder of the proof, we now want to unfold fib (n + 2) and
then follow the syntactic structure of fib4 and fib in lockstep. To do so, we
need to find a proof rule for function application. That is, what do we need
in order to prove f x . f m : xm? For starters, x . xm seems reasonable to
demand. But what about f and f m? If f has type 0a) 0b, then f m is of type
(0a) 0b mem) mem1. Intuitively, we want to state something along these
lines:

“f m is a memoized function that when applied to a value x, yields a
memoized value that is equivalent to f x ”.

This goes beyond what we can currently express with (.) as v . a merely
states that “a is a memoized value equivalent to v ”. What we need is more
liberty in our choice of equivalence. That is, we want to use statements v .R
a, with the meaning: “a is a memoized value that is related to v by R”. The
formal definition is analogous to (.) (and (.) = (.(=))):

(�.��) :: 0a) (0a) 0b) bool)) 0b mem) bool

v .R s �
8m : cmem m �!

(let (v 0; m 0) = run_state s m in R v v 0 ^ cmem m 0)

However, we still do not have a means of expressing the second part of our
sentence. To this end, we use the function relator (V):

(V) ::

(0a) 0c) bool)
) (0b) 0d) bool)) (0a) 0b)) (0c) 0d)) bool

R V S = (�f g : 8 x y : R x y �! S (f x) (g y))

1 We use 0a mem to abbreviate (nat) nat option ; 0a) state.

196 18 Dynamic Programming

Spelled out, we have (R V S) f g if for any values x and y that are related
by R, the values f x and g y are related by S.

We can finally state a proof rule for application:

x . xm ^ f .(=) V (.) f m �! f x . f m : xm

In our concrete example, we apply it once to the goal

fib (n + 1) + fib n . hh�a : hh�b: hha + biiiiii : (fib4 (n + 1)) : (fib4 n),

solve the first premise with the induction hypotheses, and arrive at

(+) fib (Suc n) .(=) V .(=) V (.)
h�a : h�b: ha + biii : fib4 (Suc n).

Our current rule for application does not match this goal. Thus we need to
generalize it. In addition, we need a new rule for return, and a rule for (V).
To summarize, we need the following set of theorems about our consistency
relation, applying them wherever they match syntactically to finish the proof:

R x y �! x .R hhyii
x .R xm ^ f .R V .S f m �! f x .S f m : xm

(8 x y : R x y �! S (f x) (g y)) �! (R V S) f g

The theorem we aimed for initially

fst (run_state (fib4 n) empty) = fib n

is now a trivial corollary of fib n . fib4 n. Note that by reading the equation
from right to left, we have an easy way to make the memoization transparent
to an end-user of fib.

18.3 Details of Memoization ∗

In this section, we will look at some further details of the memoization process
and sketch how it can be applied beyond fib. First note that our approach of
memoization hinges on two rather independent components: We transform the
original program to use the state monad, to thread (an a priori arbitrary) state
through the program. Only at the call sites of recursion, we then introduce
the memoization functionality by issuing lookups and updates to the memory
(as implemented by memo). We will name this first process monadification.
For the second component, many different memory implementations can be

� If you are just interested in the dynamic programming algorithms of the following
sections, this section can safely be skipped on the first read.

18.3 Details of Memoization 1 197

used, as long as we can define memo and prove the corresponding theorem.
However, for now we want to turn our attention towards monadification.

To discuss some of the intricacies of monadification, let us first stick with
fib for a bit longer and consider the following alternative definition:

fib n = (if n = 0 then 0 else 1 + sum_list (map fib [0::<n � 1]))

We have not yet seen how to handle two ingredients of this program: con-
structs like if-then-else or case-combinators; and higher-order functions such
as map.

It is quite clear how if-then-else can be lifted to the state monad:

if m bm xm ym � bm >>= (�b: if b then xm else ym)

By following the structure of the terms, we can also deduce a proof rule for
if m:

b . bm ^ x .R xm ^ y .R ym �!
(if b then x else y) .R if m bm xm ym

However, suppose we want to apply this proof rule to our new equation for
fib. We will certainly need the knowledge of whether n = 0 to make progress
in the correctness proof. Thus we make our rule more precise:

b . bm ^ (b �! x .R xm) ^ (: b �! y .R ym) �!
(if b then x else y) .R if m bm xm ym

How can we lift map to the state monad level? Consider its defining equa-
tions:

map f [] = []

map f (x # xs) = f x # map f xs

We can follow the pattern we used to monadify fib to monadify map:

mapm 0 f [] = hh[]ii
mapm 0 f (x # xs) = hh�a : hh�b: hha # biiiiii : (hhf ii : hhx ii) : (mapm 0 f xs)

We have obtained a function mapm 0 of type

(0a) (0s ; 0b) state)) 0a list) (0s ; 0b list) state

198 18 Dynamic Programming

This is not yet compatible with our scheme of lifting function application to
(:). We need a function of type

(0s ; (0a) (0s ; 0b) state)) (0s ; 0a list) (0s ; 0b list) state) state) state

because map has two arguments and we need one layer of the state monad
for each of its arguments. Therefore we simply define

mapm � hh�f : hhmapm 0 f iiii

To get through an induction proof for the new definition of fib, we also
need the knowledge that fib is recursively applied only to smaller values than
n when computing fib n. That is, we need to know which values f is applied
to in map f xs. We can encode this knowledge in a proof rule for map:

xs = ys
^

x : x 2 set ys �! f x .R f m x

map f xs .list_all2 R mapm : hhf mii : hhysii
The relator list_all2 lifts R to a pairwise relation on lists:

list_all2 R xs ys = (jxs j = jys j ^ (8 i<jxs j: R (xs ! i) (ys ! i)))

To summarize, here is a fully memoized version of the alternative definition
of fib:

fibm 0 n
= memo1 n

(if m hhn = 0ii hh0ii
(hh�a : hh1 + aiiii :
(hh�a : hhsum_list aiiii : (mapm : hhfibm 0ii : hh[0::<n � 1]ii))))

The correctness proof for fibm is analogous to the one for fib4, once we have
proved the new rules discussed above.

At the end of this section, we note that the techniques that were sketched
above also extend to case-combinators and other higher-order functions. Most
of the machinery for monadification and the corresponding correctness proofs
can be automated in Isabelle. The reader shall be referred to [79] for more
details. Finally note that none of the techniques we used so far are specific to
fib. The only parts that have to be adopted are the definitions of memo and
cmem. In Isabelle, this can be done by simply instantiating a locale.

18.4 The Bellman-Ford Algorithm 199

18.4 The Bellman-Ford Algorithm

Calculating shortest paths in weighted graphs is a classic algorithmic task that
we all encounter in everyday situations, such as planning the fastest route to
drive from A to B. In this scenario we can view streets as edges in a graph and
nodes as street crossings. Every edge is associated with a weight, e.g. the time
to traverse a street. We are interested in the path from A to B with minimum
weight, corresponding to the fastest route in the example. Note that in this
example it is safe to assume that all edge weights are non-negative.

Some applications demand negative edge weights as well. Suppose, we
transport ourselves a few years into the future, where we have an electric car
that can recharge itself via solar cells while driving. If we aim for the most
energy-efficient route from A to B, a very sunny route could then incur a
negative edge weight.

The Bellman-Ford algorithm is a classic dynamic programming solution to
the single-destination shortest path problem in graphs with negative edge
weights. That is, we are given a directed graph with negative edge weights
and some target vertex (known as sink), and we want to calculate the weight
of the shortest (i.e. minimum weight) paths from every vertex to the sink.
Figure 18.2 shows an example of such a graph.

0

1

2

3

4

�1

2

4

3

�2

2

5 �1

2

Fig. 18.2. Example of a weighted directed graph

Formally, we will take a simple view of graphs. We assume that we are given
a number of nodes numbered 0;: : : ;n, and some sink t 2 f0::ng (thus n = t
= 4 in the example). Edge weights are given by a function W :: int) int
) int extended. The type int extended extends the natural numbers with
positive and negative infinity:

datatype 0a extended = Fin 0a j 1 j �1

200 18 Dynamic Programming

We refrain from giving the explicit definition of addition and comparison on
this domain, and rely on your intuition instead. A weight assignment W i j
= 1 means that there is no edge from i to j.

18.4.1 Deriving a Recursion

The main idea of the algorithm is to consider paths in order of increasing
length in the number of edges. In the example, we can immediately read
off the weights of the shortest paths to the sink that use only one edge: only
nodes 2 and 3 are directly connected to the sink, with edge weights 3 and 2,
respectively; for all others the weight is infinite. How can we now calculate
the minimum weight paths (to the sink) with at most two edges? For node 3,
the weight of the shortest path with at most two edges is: either the weight of
the path with one edge; or the weight of the edge from node 3 to node 2 plus
the weight of the path with one edge from node 2 to the sink. Because �2 +

3 = 1 � 2, we get a new minimum weight of 1 for node 3. Following the same
scheme, we can iteratively calculate the minimum path weights given in table
18.1.

i=v 0 1 2 3 4
0 1 1 1 1 0
1 1 1 3 2 0
2 5 6 3 1 0
3 5 5 3 1 0
4 4 5 3 1 0

Table 18.1. The minimum weights of paths from vertices v = 0 : : : 4 to t that use
at most i = 0 : : : 4 edges.

The analysis we just ran on the example already gives us a clear intuition on
all we need to deduce a dynamic program: a recursion on sub-problems, in
this case to compute the weight of shortest paths with at most i + 1 edges
from the weights of shortest paths with at most i edges. To formalize this
recursion, we first define the notion of a minimum weight path from some
node v to t with at most i edges, denoted as OPT i v :

OPT i v
= Min (fweight (v # xs @ [t]) j jxs j + 1 � i ^ set xs � f0::ngg [

fif t = v then 0 else 1g)

18.4 The Bellman-Ford Algorithm 201

weight :: (nat) nat) int extended)) nat list) int extended

weight _ [_] = 0

weight W (i # j # xs) = W i j + weight W (j # xs)

If i = 0, things are simple:

OPT 0 v = (if t = v then 0 else 1)

A shortest path that constitutes OPT (i + 1) v uses either at most i or
exactly i + 1 edges. That is, OPT (i + 1) v is either OPT i v, or the weight
of the edge from v to any of its neighbours w plus OPT i w :

OPT (i + 1) v
= min (OPT i v) (Min fOPT i w + W v w j w � ng)

Proof. We prove this equality by proving two inequalities:

(lhs � rhs) For this direction, we essentially need to show that every path
on the rhs is covered by the lhs, which is trivial.

(lhs � rhs) We skip the cases where OPT (i + 1) v is trivially 0 or1. Thus
consider some xs such that OPT (i + 1) v = weight (v # xs @ [t]),
jxs j � i, and set xs � f0::ng. The cases where jxs j < i or i = 0 are trivial.
Otherwise, we have OPT (i + 1) v = W v (hd xs) + weight (xs @ [t])
by definition of weight, and OPT i (hd xs) � weight (xs @ [t]) by def-
inition of OPT. Therefore, we can show:

OPT (i + 1) v � OPT i (hd xs) + W v (hd xs) � rhs
ut

We can turn these equations into a recursive program:

bf :: nat) nat) int extended

bf 0 v = (if t = v then 0 else 1)

bf (i + 1) v
= min_list (bf i v # map (�i : W v i + bf i i) [0::<n + 1])

It is obvious that we can prove correctness of bf by induction:

bf i v = OPT i v

18.4.2 Negative Cycles

Have we solved the initial problem now? The answer is “not quite” because
we have ignored one additional complication. Consider our example table 18.1

202 18 Dynamic Programming

again. The table stops at path length five because no shorter paths with more
edges exist. For this example, five corresponds to the number of nodes, which
bounds the length of the longest simple path. However, is it the case that we
will never find shorter non-simple paths in other graphs? The answer is “no”.
If a graph contains a negative reaching cycle, i.e. a cycle with a negative sum
of edge weights from which the sink is reachable, then we can use it arbitrarily
often too find shorter and shorter paths.

Luckily, we can use the Bellman-Ford algorithm to detect this situation
by examining the relationship of OPT n and OPT (n + 1). The following
proposition summarizes the key insight:

The graph contains a negative reaching cycle if and only if there exists a
v � n such that OPT (n + 1) v < OPT n v

Proof. If there is no negative reaching cycle, then all shortest paths are
either simple or contain superfluous cycles of weight 0. Thus, we have
OPT (n + 1) v = OPT n v for all v � n.

Otherwise, there is a negative reaching cycle ys = a # xs @ [a] with
weight ys < 0. Working towards a contradiction, assume that OPT n v �
OPT (n + 1) v for all v � n. Using the recursion we proved above, this
implies OPT n v � W v u + OPT n u for all u ; v � n. By applying this
inequality to the nodes in a # xs, we can prove the inequality

sum_list (map (OPT n) ys)
� sum_list (map (OPT n) ys) + weight ys

This implies 0 � weight ys, which yields the contradiction. ut

This means we can use bf to detect the existence of negative reaching
cycles by computing one more round, i.e. bf (n + 1) v for all v. If nothing
changes in this step, we know that there are no negative reaching cycles and
that bf n correctly represents the shortest path weights. Otherwise, there has
to be a negative reaching cycle.

Finally, we can use memoization to obtain an efficient implementation that
solves the single-destination shortest path problem. Applying our memoiza-
tion technique from above, we first obtain a memoizing version bf m of bf. We
then define the following program:

bellman_ford �
iter_bf (n ; n) >>=
(�_: mapm 0 (bf m n) [0::<n + 1] >>=

(�xs : mapm 0 (bf m (n + 1)) [0::<n + 1] >>=

(�ys : hhif xs = ys then Some xs else Noneii)))

18.5 Optimal Binary Search Trees 203

Here, iter_bf (n ; n) just computes the values from bf m 0 0 to bf m n n
in a row-by-row manner. Using the reasoning principles that were described
above, we can then prove that bellman_ford indeed solves its intended task
correctly (shortest v is the length of the shortest path from v to t):

(8 i�n : 8 j�n : �1 < W i j) �!
fst (run_state bellman_ford empty)
= (if has_negative_cycle n W t then None

else Some (map shortest [0::<n + 1]))

18.5 Optimal Binary Search Trees

In this book, we have studied various tree data structures that guarantee
logarithmic runtime bounds for operations such as lookups and updates into
the tree. These bounds were usually worst-case and did not take into account
any information about the actual series of queries that are to be issued to the
data structure. In this section, instead, we want to focus on binary search
trees that minimize the amount of work that needs to be done when the
distribution of keys in a sequence of lookup operations is known in advance.

More formally, we want to study the following problem. We are given a
range of integers [i ::j] and a function p :: int) nat that maps each key in
the range to a percentage corresponding to the probability that this key is
searched for 2. Our goal is to find a binary search tree that minimizes the
expected number of comparisons when presented with a sequence of lookup
keys in the range [i ::j] that adhere to the distribution given by p.

As an example, consider the range [1::5] with probabilities [10; 30; 15; 25;

20]. This tree

3

2

1

4

5

incurs an expected value of 2.15 lookup operations. However, the minimal
expected value is 2 and is achieved by this tree:

2 In the rest of the discussion, p does not necessarily have to represent a probability
distribution, i.e. the value of sum p fi ::jg does not have to be 100.

204 18 Dynamic Programming

4

2

1 3

5

It is clear that our task is equivalent to minimizing the weighted path
length (or cost) as we did for Huffman encodings above. Recall that the
weighted path length is the sum of the frequencies of every node in the tree
multiplied by its depth in the tree. It fulfills the following (recursive) equa-
tions:

cost hi = 0

cost hl ; k ; ri
= sum p (set_tree l) + cost l + p k + cost r + sum p (set_tree r)

The difference of our task compared to finding an optimal Huffman encoding
is the constraint that the resulting tree needs to be sorted, making it hard to
deploy a similar greedy solution. Instead, we want to come up with a dynamic
programming solution and thus need to find a way to subdivide the problem.

18.5.1 Deriving a Recursion

The key insight into the problem is that subtrees of optimal binary search
trees are also optimal. Consider the optimal tree from above again. The left
and right subtrees of the root must be optimal, since if we could improve
either one, we would also get a better tree for the complete range of keys.
This motivates the following definition:

wpl W i j hi = 0

wpl W i j hl ; k ; ri
= wpl W i (k � 1) l + wpl W (k + 1) j r + W i j

W i j = sum p fi ::j g

It is easy to see that wpl W i j is just reformulation of cost t :

inorder t = [i ::j] �! wpl W i j t = cost t

We can actually forget about the original distribution p and just optimize
wpl W i j for some fixed weight function W :: int) int) nat.

18.5 Optimal Binary Search Trees 205

The binary search tree t that contains the keys [i ::j] and minimizes wpl
W i j t has some root k with [i ::j] = [i ::k � 1] @ k # [j + 1::k]. Its left and
right subtrees need to be optimal again, i.e. minimize wpl W i (k � 1) and
wpl W (k + 1) j. This yields the following recursive functions for computing
the optimum weighted path length (min_wpl) and the binary search tree
itself (opt_bst):

min_wpl :: int) int) nat

min_wpl i j
= (if j < i then 0

else min_list
(map (�k : min_wpl i (k � 1) + min_wpl (k + 1) j +

W i j)
[i ::j]))

opt_bst :: int � int) int tree

opt_bst (i ; j)
= (if j < i then hi

else argmin (wpl W i j)
(map (�k : hopt_bst (i ; k � 1); k ; opt_bst (k + 1; j)i) [i ::j]))

Here argmin f xs returns the rightmost x 2 set xs such that f x is maximal
among xs.

To prove that min_wpl and opt_bst are correct, we want to show two
properties: the value of min_wpl i j should be a lower bound of wpl W i j
t for any search tree t for [i ::j], and min_wpl i j should correspond to the
weight of an actual search tree, namely opt_bst (i ; j). Formally, we prove
the following properties:

inorder t = [i ::j] �! min_wpl i j � wpl W i j t

inorder (opt_bst (i ; j)) = [i ::j]

wpl W i j (opt_bst (i ; j)) = min_wpl i j

Proof. The first property is easily proved by computation induction on wpl
W, and the second and third property are equally easily proved using com-
putation induction on min_wpl. ut
If we substitute the weights that are constructed from p (W), we can derive
the following correctness theorems referring to the original problem:

inorder t = [i ::j] �! min_wpl W i j � cost t

cost (opt_bst W (i ; j)) = min_wpl W i j

206 18 Dynamic Programming

18.5.2 Memoization

We can apply the memoization techniques that were discussed above to ef-
ficiently compute min_wpl and opt_bst. The only remaining caveat is that
W also needs to be computed efficiently from the distribution p. If we just
use the defining equality W i j = sum p fi ::j g, the computation of W is
unnecessarily costly. Another way is to memoize W itself, using the following
recursion:

W i j = (if i � j then W i (j � 1) + p j else 0)

This yields a memoizing version Wm
0 and a theorem that connects it to W :

W m x . Wm
0 p m x

We can now iterate Wm
0 i n for i = 0: : :n to pre-compute all relevant values

of W i j :

W c p n = snd (run_state (mapm 0 (�i : Wm
0 p i n) [0::n]) empty)

Using the correctness theorem for mapm 0 from above, it can easily be shown
that this yields a consistent memory:

cmem (compute_W n)

Finally, we can show the following equation for computing W

W p i j = (case (W c p n) (i ; j) of None) W p i j j Some x) x)

and use it to pass the pre-computed values of W to opt_bst :

opt_bst 0 :: (int) nat)) int) int) int tree

opt_bst 0 p i j �
let M = W c p j ;

W = �i j : case M (i ; j) of None) W p i j j Some x) x
in opt_bst W (i ; j)

18.5.3 Optimizing the Recursion

While we have applied some trickery to obtain an efficient implementation
of the simple dynamic programming algorithm expressed by opt_bst, we still
have not arrived at the solution that is currently known to be most efficient.
The most efficient known algorithm to compute optimal binary search trees

18.5 Optimal Binary Search Trees 207

due to Knuth [41] is a slight variation of opt_bst and relies on the following
observation.

Let R i j denote the maximal root of any optimal binary search for [i ::j]:

R i j
= argmin (�k : w i j + min_wpl i (k � 1) + min_wpl (k + 1) j) [i ::j]

It can be shown that R i j is bounded by R i (j � 1) and R (i + 1) j :

i < j �! R i (j � 1) � R i j ^ R i j � R (i + 1) j

The proof of this fact is rather involved and we refer the interested reader to
the expositions of Yao [80] or Mehlhorn [48] for details. An Isabelle formal-
ization by Nipkow and Somogyi is also available [59].

With this knowledge, we can make the following optimization to opt_bst :

opt_bst2 :: int) int) int tree

opt_bst2 i j
= (if j < i then hi

else if i = j then hhi; i ; hii
else let left = root (opt_bst2 i (j � 1));

right = root (opt_bst2 (i + 1) j)
in argmin (wpl i j)

(map (�k : hopt_bst2 i (k � 1); k ;
opt_bst2 (k + 1) j i)

[left ::right]))

You may wonder whether this change really incurs an asymptotic runtime im-
provement. Indeed, it can be shown that it improves the algorithm’s runtime
by a factor of O(n). For a fixed search tree size d = i � j, the total number
of recursive computations is given by the following telescoping series:

d � n �!
(
P

j = d ::n : let i = j � d in R (i + 1) j � R i (j � 1) + 1)

= R (n � d + 1) n � R 0 (d � 1) + n � d + 1

This quantity is bounded by 2 � n, which implies that the overall number of
recursive computation calls is bounded by O(n2).

Bibliographic Remarks

The original O(n2) algorithm for Binary Search Trees is due to Knuth [41].
Yao later explained this optimization more elegantly in his framework of

208 18 Dynamic Programming

"quadrilateral inequalities" [80]. Nipkow and Somogyi follow Yao’s approach
in their Isabelle formalization [59], on which the last subsection of this chapter
is based. The other parts of this chapter are based on a paper by Wimmer
et al. [79] and its accompanying Isabelle formalization [78]. The formalization
also contains further examples of dynamic programming algorithms, includ-
ing solutions for the Knapsack and the minimum edit distance problems, and
the CYK algorithm.

19

Amortized Analysis

Consider a k-bit binary counter and a sequence of increment (by one) op-
erations on it where each one starts from the least significant bit and keeps
flipping the 1s until a 0 is encountered (and flipped). Thus the worst-case
running time of an increment is O(k) and a sequence of n increments takes
time O(nk). However, this analysis is very coarse: in a sequence of increments
there are many much faster ones (for half of them the least significant bit
is 0!). It turns out that a sequence of n increments takes time O(n). Thus
the average running time of each increment is O(1). Amortized analysis is
the analysis of the running time of a sequence of operations on some data
structure by upper-bounding the average running time of each operation.

As the example of the binary counter shows, the amortized running time
for a single call of an operation can be much better than the worst-case time.
Thus amortized analysis is unsuitable in a real-time context where worst-case
bounds on every call of an operation are required.

Below we assume that there is a single data structure (in the example: the
binary counter) that is an argument to each of the operations and may also
be returned as a result.

Amortized analysis is valid only if the data structure is used in a single-
threaded manner. The binary counter shows why: start from 0, increment
the counter until all bits are 1, then increment that counter value again and
again, without destroying it. Each of those increments takes time O(k) and
you can do that as often as you like, thus subverting the analysis. In an
imperative language you can easily avoid this “abuse” by making the data
structure stateful: every operation modifies the state of the data structure.
This shows that amortized analysis has an imperative flavour. In a purely
functional language, monads can be used to guarantee single-threadedness.

210 19 Amortized Analysis

19.1 The Potential Method

The potential method is a particular technique for amortized analysis. The
key idea is to define a potential function � from the data structure to non-
negative numbers. The potential of the data structure is like a savings account
that cheap calls can pay into (by increasing the potential) to compensate for
later expensive calls (which decrease the potential). In a nutshell: the less
“balanced” a data structure is, the higher its potential should be because it
will be needed to pay for the impending restructuring.

The amortized running time is defined as the actual running time plus
the difference in potential, i.e. the potential after the call minus the potential
before it. If the potential increases, the amortized running time is higher than
the actual running time and we pay the difference into our savings account. If
the potential decreases, the amortized running time is lower than the actual
running time and we take something out of our savings account to pay for the
difference.

More formally, we are given some data structure with operations f, g,
etc on it with corresponding time functions Tf, Tg etc. We are also given a
potential function �. Then the amortized running time function Af for f is
defined as follows:

Af s = Tf s + � (f s) � � s (19.1)

where s is the data structure under consideration; f may also have additional
parameters. Given a sequence of data structure states s0, . . . , sn where si+1

= f i si, it is not hard to see thatPn�1
i = 0 Afi si =

Pn�1
i = 0 Tfi si + � sn � � s0

If we assume (for simplicity) that � s0 = 0, then it follows immediately that
the amortized running time of the whole sequence is an upper bound of the
actual running time (because � is non-negative). This observation becomes
useful if we can bound Af s by some closed term uf s. Typical examples for
uf s are constants, logarithms etc. Then we can conclude that f has constant,
logarithmic etc amortized complexity. Thus the only proof obligation is

Af s � uf s

possibly under the additional assumption invar s if the data structure comes
with an invariant invar.

In the sequel we assume that s0 is some fixed value, typically “empty”,
and that its potential is 0.

How do we analyze operations that combine two data structures, e.g. the
union of two sets? Their amortized complexity can be defined in analogy to
(19.1):

19.2 Examples 211

Af s1 s2 = Tf s1 s2 + � (f s1 s2) � (� s1 + � s2)

So far we implicitly assumed that all operations return the data structure
as a result, otherwise � (f s) does not make sense. How should we analyze
so-called observer functions that do not modify the data structure but
return a value of some other type? Amortized analysis does not make sense
here because the same observer can be applied multiple times to the same
data structure value without modifying it. Classical worst-case complexity is
needed, unless the observer does modify the data structure as a side effect or
by returning a new value. Then one can perform an amortized analysis that
ignores the returned observer value (but not the time it takes to compute it).

19.2 Examples

19.2.1 Binary Counter

The binary counter is represented by a list of booleans where the head of the
list is the least significant bit. The increment operation and its running time
are easily defined:

incr :: bool list) bool list

incr [] = [True]
incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

Tincr :: bool list) real

Tincr [] = 1

Tincr (False # _) = 1

Tincr (True # bs) = Tincr bs + 1

The potential of a counter is the number of True ’s because they increase
Tincr:

� :: bool list) real

� bs = jfilter (�x : x) bs j

Clearly the potential is never negative.
The amortized complexity of incr is 2:

Tincr bs + � (incr bs) � � bs = 2

This can be proved automatically by induction on bs.

212 19 Amortized Analysis

Bibliographic Remarks

Amortized analysis is due to Tarjan [72]. Introductions to it can be found in
most algorithm textbooks. This chapter is based on earlier work by Nipkow
[53, 55] which also formalizes the meta-theory of amortized analysis.

20

Queues

20.1 Queue Specification

A queue can be viewed as a glorified list with function enq for adding an
element to the end of the list and function first for accessing and deq for
removing the first element. This is the full ADT:

ADT Queue =

interface empty :: 0q
enq :: 0a) 0q) 0q
deq :: 0q) 0q
first :: 0q) 0a
is_empty :: 0q) bool

abstraction list :: 0q) 0a list
invariant invar :: 0q) bool

specification list empty = []

invar q �! list (enq x q) = list q @ [x]
invar q �! list (deq q) = tl (list q)
invar q ^ list q 6= [] �! first q = hd (list q)
invar q �! is_empty q = (list q = [])

invar empty
invar q �! invar (enq x q)
invar q �! invar (deq q)

A trivial implementation is as a list, but then enq is linear in the length of the
queue. To improve this we consider two more sophisticated implementations.
First, a simple implementation where every operation has amortized constant
complexity. Second, a tricky “real time” implementation where every operation
has worst-case constant complexity.

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Queue_Spec.html

214 20 Queues

20.2 Queues as Pairs of Lists

The queue is implemented as a pair of lists (fs ; rs), the front and rear lists.
Function enq adds elements to the head of the rear rs and deq removes
elements from the head of the front fs. When fs becomes empty, it is replaced
by rev rs (and rs is emptied) — the reversal ensures that now the oldest
element is at the head. Hence rs is really the reversal of the rear of the queue
but we just call it the rear. The abstraction function is obvious:

list :: 0a list � 0a list) 0a list

list (fs ; rs) = fs @ rev rs

Clearly enq and deq are constant-time until the front becomes empty.
Then we need to reverse the rear which takes linear time (if it is implemented
by itrev, see Section 1.5.1). But we can pay for this linear cost up front by
paying a constant amount for each call of enq. Thus we arrive at amortized
constant time. See below for the formal treatment.

The implementation is shown in Figure 20.1. Of course empty = ([]; []).
Function norm performs the reversal of the rear once the front becomes

norm :: 0a list � 0a list) 0a list � 0a list

norm (fs ; rs) = (if fs = [] then (itrev rs []; []) else (fs ; rs))

enq :: 0a) 0a list � 0a list) 0a list � 0a list

enq a (fs ; rs) = norm (fs ; a # rs)

deq :: 0a list � 0a list) 0a list � 0a list

deq (fs ; rs) = (if fs = [] then (fs ; rs) else norm (tl fs ; rs))

first :: 0a list � 0a list) 0a

first (a # _; _) = a

is_empty :: 0a list � 0a list) bool

is_empty (fs ; _) = (fs = [])

Fig. 20.1. Queue as a pair of lists

empty. Why does not only deq but also enq call norm? Because otherwise
enq xn (:::(enq x 1 empty):::) would result in ([]; [xn; :::; x 1]) and first would

http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/Queue_2Lists.html

20.3 A Real Time Implementation 215

become an expensive operation because it would requires the reversal of the
rear. Thus we need to avoid queues ([]; rs) where rs 6= []. Thus norm guar-
antees the following invariant:

invar :: 0a list � 0a list) bool

invar (fs ; rs) = (fs = [] �! rs = [])

Functional correctness, i.e. proofs of the properties in the ADT Queue,
are straightforward. Let us now turn to the amortized running time analysis.
The time functions are shown in Appendix B.6.

For the amortized analysis we define the potential function

� :: 0a list � 0a list) nat

� (_; rs) = jrs j

because jrs j is the amount we have accumulated by charging 1 for each enq.
This is enough to pay for the eventual reversal. Now it is easy to prove that
both enq and deq have amortized constant running time:

Tenq a (fs ; rs) + � (enq a (fs ; rs)) � � (fs ; rs) � 4

Tdeq (fs ; rs) + � (deq (fs ; rs)) � � (fs ; rs) � 3

The two observer functions first and is_empty have constant running time.

20.3 A Real Time Implementation

This sections presents the Hood-Melville queue, a tricky implementation
that improves upon the representation in the previous Section by preemptively
performing reversals over a number of operations before they are required.

20.3.1 Stepped Reversal

Breaking down a reversal operation into multiple steps can be done using the
following function:

rev_step :: 0a list � 0a list) 0a list � 0a list

rev_step (x # xs ; ys) = (xs ; x # ys)
rev_step ([]; ys) = ([]; ys)

https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html
https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html

216 20 Queues

where x # xs is the list being reversed, and x # ys is the partial reversal
result. Thus, to reverse a list of size 3 one should call rev_step 3 times:

rev_step ([1; 2; 3]; []) = ([2; 3]; [1])

rev_step (rev_step ([1; 2; 3]; [])) = ([3]; [2; 1])

rev_step (rev_step (rev_step ([1; 2; 3]; []))) = ([]; [3; 2; 1])

Note that each call to rev_step takes constant time since its definition is
non-recursive.

Using the notation f n for the n-fold composition of function f we can
state a simple inductive lemma:

Lemma 20.1. rev_stepjxs j (xs ; ys) = ([]; rev xs @ ys)

As a special case this implies rev_stepjxs j (xs ; []) = ([]; rev xs).

20.3.2 A Real Time Intuition

Hood-Melville queues are similar to those presented in Section 20.2 in that
they use a pair of lists (f ; r) (front and rear — for succinctness we drop the
s’s now) to achieve constant running time deq and enq. However, they avoid
a costly reversal operation once f becomes empty by preemptively computing
a new front fr = f @ rev r one step at a time using rev_step as enqueueing
and dequeueing operations occur. The process that generates fr consists of
three phases:

1. Reverse r to form r 0, which is the tail end of fr
2. Reverse f to form f 0

3. Reverse f 0 onto r 0 to form fr

All three phases can be described in terms of rev_step as follows:

1. r 0 = snd (rev_stepjr j (r ; []))
2. f 0 = snd (rev_stepjf j (f ; []))
3. fr = snd (rev_stepjf

0j (f 0; r 0))

Phases (1) and (2) are independent and can be performed at the same time,
hence, when starting from this configuration

q0 ::: qm

f f 0

qm+1 ::: qn

r r 0

after max jf j jr j steps of reversal the state would be the following:

f

qm ::: q0

f 0 r

qn ::: qm+1

r 0

20.3 A Real Time Implementation 217

Phase (3) reverses f 0 onto r 0 fr to obtain the same result as a call to list :

fr = snd (rev_stepjf
0j (f 0; r 0)) by definition of fr

= rev f 0 @ r 0 using Lemma 20.1
= rev f 0 @ snd (rev_stepjr j (r ; [])) by definition of r 0

= rev f 0 @ rev r using Lemma 20.1
= rev (snd (rev_stepjf j (f ; []))) @ rev r 0 by definition of f 0

= rev (rev f) @ rev r using Lemma 20.1
= f @ rev r by rev involution

The resulting front list fr contains all elements previously in f and r :

q0 ::: qm qm+1 ::: qn

fr

f rev r

A Hood-Melville queue spreads all reversal steps across queue altering
operations requiring careful bookkeeping. To achieve this gradual reversal,
additional lists front and rear are used for enqueuing and dequeuing, while
internal operations rely only on f, f 0, r, and r 0. At the start of the reversal
process rear is copied into r and emptied; similarly, front is copied into f, but
its contents are kept as they might need to be dequeued. Moreover, to avoid
using elements from f or f 0 that may have been removed from front, a counter
d records the number of dequeuing operations that have occurred since the
reversal process started; this way, only jf 0j � d elements are appended into r
to form fr. Once the reversal finishes fr become the new front and the internal
lists are cleared. When the queue is not being reversed all operations are
performed in a manner similar to previous implementations. The configuration
of a queue at the beginning of the reversal process is as follows:

q0 ::: qm

f f 0

qm+1 ::: qn

r r 0

q0 ::: qm

front rear

q0 ::: qm qm+1 ::: qn

queue

deq enqd = 0

https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html

218 20 Queues

20.3.3 The Reversal Strategy

A crucial detail of this implementation is determining at which point the
reversal process should occur. The strategy is to start once jrear j becomes
larger than jfront j, and ensure that all reversal steps are done before front
runs out of elements or rear becomes larger than the new front (fr).

With this strategy, once jrear j = n+1 and jfront j = n, the reversal pro-
cesses starts. The first two phases take n + 1 steps (max jfront j jrear j) to
generate f 0 and r 0, and the third phase produces fr in n steps. A complete
reversal takes 2 � n + 1 steps. Because the queue can only perform n deq
operations before front is exhausted, 2 � n + 1 steps must be performed in
at most n operations. This can be achieved by performing the first two steps
in the operation that causes rear to become larger than front and two more
steps in each subsequent operation. Therefore, 2 � (n + 1) steps can occur
before front is emptied, allowing the reversal process to finish in time.

Finally, since at most n enq or deq operations can occur during reversal,
the largest possible rear has length n (only enq ops), while the smallest
possible fr has length n + 1 (only deq ops). Thus, after the reversing process
has finished the new front (fr) is always larger than rear.

20.3.4 Implementation

Queues are implemented using the following record type:

record 0a queue = lenf :: nat
front :: 0a list
status :: 0a status
rear :: 0a list
lenr :: nat

In a nutshell, a record is a product type with named fields and "built-
in" construction, selection, and update operations. Values of 0a queue are
constructed using make :: nat) 0a list) 0a status) 0a list) nat)
0a queue were each argument corresponds to one of the fields of the record
in canonical order. Additionally, given a queue q we can obtain the value in
field front with front q, and update its content using q(jfront := []j). Multiple
updates can be composed as q(jfront := []; rear := []j).

All values in the queue along with its internal state are stored in the
various fields of 0a queue. Fields front and rear contain the lists over which
all queue operations are performed. The length of front and rear is recorded
in lenf and lenr (respectively) to avoid calling length whose complexity is

20.3 A Real Time Implementation 219

not constant. Finally, status tracks the current reversal phase of the queue in
a 0a status value.

datatype 0a status =

Idle j
Rev nat (0a list) (0a list) (0a list) (0a list) j
App nat (0a list) (0a list) j
Done

Each value of 0a status represents either a phase of reversal or the queue’s
normal operation. Constructor Idle signals that no reversal is being per-
formed. Rev ok f f 0 r r 0 corresponds to phases (1) and (2) where the lists
f, f 0, r, and r 0 are used for the reversal steps of the front and the rear. The
App ok f 0 r 0 case corresponds to phase (3) where both lists are appended
to form the new front (fr). In both App and Rev, the first argument ok (of
type nat) keeps track of the number of elements in f 0 that have not been
removed from the queue, effectively ok = jf 0j � d, where d is the number of
deq operations that have occurred so far. Lastly, Done fr marks the end of
the reversal process and contains only the new front list fr.

In the implementation, all of the steps of reversal operations in the queue
are performed by functions exec and invalidate ; they ensure at each step
that the front list being computed is kept consistent w.r.t. the contents and
operations in the queue.

Function exec :: 0a status) 0a status performs the incremental reversal
of the front list by altering the queue’s status one step at a time in accordance
with the reversal phases. Following the strategy described in Section 20.3.3,
all queue operations call exec twice to be able to finish the reversal in time.
On Idle queues exec has no effect. The implementation of exec is an extension
of rev_step with specific considerations for each status value and is defined
as follows:

exec :: 0a status) 0a status

exec (Rev ok (x # f) f 0 (y # r) r 0)
= Rev (ok + 1) f (x # f 0) r (y # r 0)
exec (Rev ok [] f 0 [y] r 0) = App ok f 0 (y # r 0)
exec (App 0 f 0 r 0) = Done r 0

exec (App ok (x # f 0) r 0) = App (ok � 1) f 0 (x # r 0)
exec s = s

If the status is Rev ok f f 0 r r 0, then exec performs two (or one if f =

[]) simultaneous reversal steps from f and r into f 0 and r 0; moreover ok is

https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html

220 20 Queues

incremented if a new element has been added to f 0. Once f is exhausted and
r is a singleton list, the remaining element is moved into r 0 and the status
is updated to the next phase of reversal. In the App ok f 0 r 0 phase, exec
moves elements from f 0 to r 0 until ok = 0, at which point r 0 becomes the
new front by transitioning into Done r 0. In all other cases exec behaves as
the identity function. As is apparent from its implementation, a number of
assumptions are required for exec to function properly and eventually produce
Done. These assumption are discussed in Section 20.3.5.

If an element is removed from the queue during the reversal process, it also
needs to be removed from the new front list (fr) being computed. Function
invalidate is used to achieve this:

invalidate :: 0a status) 0a status

invalidate (Rev ok f f 0 r r 0) = Rev (ok � 1) f f 0 r r 0

invalidate (App 0 f 0 (_ # r 0)) = Done r 0

invalidate (App ok f 0 r 0) = App (ok � 1) f 0 r 0

invalidate s = s

By decreasing the value of ok, the number of elements from f 0 that are
moved into r 0 in phase (3) is reduced, since exec might produce Done early,
once ok = 0, ignoring the remaining elements of f 0. Furthermore, since f 0 is
a reversal of the front list, elements left behind in its tail correspond directly
to those being removed from the queue.

The rest of the implementation is shown below. Auxiliary function exec2,
as its name suggests, applies exec twice and updates the queue accordingly if
Done is returned.

exec2 :: 0a queue) 0a queue

exec2 q = (case exec (exec q) of
Done fr) q(jstatus = Idle ; front = fr j) j
newstatus) q(jstatus = newstatus j))

check :: 0a queue) 0a queue

check q
= (if lenr q � lenf q then exec2 q

else let newstate = Rev 0 (front q) [] (rear q) []

in exec2
(q(jlenf := lenf q + lenr q ; status := newstate ; rear := [];

lenr := 0j)))

20.3 A Real Time Implementation 221

empty :: 0a queue

empty = make 0 [] Idle [] 0

first :: 0a queue) 0a

first q = hd (front q)

enq :: 0a) 0a queue) 0a queue

enq x q = check (q(jrear := x # rear q ; lenr := lenr q + 1j))

deq :: 0a queue) 0a queue

deq q
= check

(q(jlenf := lenf q � 1; front := tl (front q);
status := invalidate (status q)j))

The two main queue operations, enq and deq, alter front and rear as
expected, with additional updates to lenf and lenr to keep track of the their
length. To perform all “internal” operations, both functions call check. Addi-
tionally, deq uses invalidate to mark elements as removed.

Function check calls exec2 if lenr is not larger than lenf. Otherwise a
reversal process is initiated: rear is emptied and lenr is set to 0; lenf is
increased to the size of the whole queue since, conceptually, all element are
now in the soon-to-be-computed front; the status newstate is initialized as
described at the beginning of Section 20.3.2.

The time complexity of this implementation is clearly constant, since there
are no recursive functions.

20.3.5 Functional Correctness

To show this implementation is an instance of the ADT Queue, we need a
number of invariants to ensure the consistency of 0a queue values are pre-
served by all operations.

Initially, as hinted by the definition of exec, values of type 0a status should
have certain properties to guarantee a Done result after a (finite) number of
calls to exec. The predicate inv_st defines these properties as follows:

inv_st :: 0a status) bool

inv_st (Rev ok f f 0 r r 0) = (jf j + 1 = jr j ^ jf 0j = jr 0j ^ ok � jf 0j)

https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html

222 20 Queues

inv_st (App ok f 0 r 0) = (ok � jf 0j ^ jf 0j < jr 0j)
inv_st Idle = True
inv_st (Done _) = True

These properties follow from our reversal strategy, initial configuration, and
the definition of exec itself. First, inv_st ensures for pattern Rev ok f f 0 r r 0

that arguments f and r follow the reversal strategy, and counter ok is only
ever increased as elements are added to f 0. Similarly for App ok f 0 r 0, it must
follow that r 0 remains larger than f 0, and jf 0j provides an upper bound for
ok. Finally, all other patterns trivially fulfill the invariant.

Naturally, the consistency of 0a queue values is defined as an extension of
inv_st and predicates over all other fields in the queue. Operations enq, deq
must preserve the relation of lenr and lenf with their corresponding lists,
while check must start the reversal process at the right time and handle its
result appropriately. The predicate invar defines the required properties:

invar q
= (lenf q = jfront_list q j ^ lenr q = jrear_list q j ^

lenr q � lenf q ^
(case status q of
Rev ok f f 0 _ _)
2 � lenr q � jf 0j ^ ok 6= 0 ^
2 � jf j + ok + 2 � 2 � jfront q j
j App ok _ r) 2 � lenr q � jr j ^ ok + 1 � 2 � jfront q j
j _) True) ^
(9 rest : front_list q = front q @ rest) ^
(@ fr : status q = Done fr) ^
inv_st (status q))

For a queue q, value rear_list q is a list representing the rear of the
queue in canonical order (first elements at the front), and it is defined as
(rev � rear) q. Similarly, value front_list q represents the front of the queue;
However, its definition is more intricate as it needs to account for the front list
being generated by the reversal process. The function rem_steps calculates
the number of steps required such that 9 x : execrem_steps s s = Done x.

Using invar we can prove the properties of enq and deq required by the
Queue ADT using this abstraction function:

list :: 0a queue) 0a list

list q = front_list q @ rear_list q

20.3 A Real Time Implementation 223

All other assumptions in Queue are straightforward.

Bibliographic Remarks

The representation of queues as pairs of lists is due to Burton [11]. The Hood-
Melville queues are due to Hood and Melville [30]. The implementation is
based on the presentation by Okasaki [62].

https://devel.isa-afp.org/browser_info/current/AFP/Hood_Melville_Queue/Hood_Melville_Queue.html

21

Splay Trees

Splay trees are fascinating self-organizing search trees. Self-organizing means
that the tree structure is modified upon access (including isin queries) to
improve the performance of subsequent operations. Concretely, every splay
tree operation moves the element concerned to the root. Thus splay trees
excel in applications where a small fraction of the entries are the targets of
most of the operations. In general, splay trees perform as well as any static
binary search tree.

Splay trees have two drawbacks. First, their performance guarantees (log-
arithmic running time of each operation) are only amortized. Self-organizing
does not mean self-balancing: splay trees can become unbalanced, in contrast
to, for example, red-black trees. Second, because isin modifies the tree, splay
trees are less convenient to use in a purely functional language.

21.1 Implementation

The central operation on splay trees is the splay function shown in Fig-
ure 21.1. It rotates the given element x to the root of the tree if x is already
in the tree. Otherwise the last element found before the search for x hits a
leaf is rotated to the root.

Function isin has a trivial implementation in terms of splay :

isin :: 0a tree) 0a) bool

isin t x = (case splay x t of hi) False j h_; a ; _i) x = a)

Except that splay creates a new tree that needs to be returned from a proper
isin as well to achieve the amortized logarithmic complexity (see the discus-
sion of observer functions at the end of Section 19.1). This is why splay trees

https://devel.isa-afp.org/browser_info/current/AFP/Splay_Tree/Splay_Tree.html

226 21 Splay Trees

splay x hAB ; b; CDi
= (case cmp x b of

LT) case AB of
hi) hAB ; b; CDi j
hA; a ; Bi)

case cmp x a of
LT) if A = hi then hA; a ; hB ; b; CDii

else case splay x A of
hA1; a 0; A2i) hA1; a 0; hA2; a ; hB ; b; CDiii j

EQ) hA; a ; hB ; b; CDii j
GT) if B = hi then hA; a ; hB ; b; CDii

else case splay x B of
hB1; b 0; B2i) hhA; a ; B1i; b 0; hB2; b; CDii j

EQ) hAB ; b; CDi j
GT) case CD of

hi) hAB ; b; CDi j
hC ; c; Di)

case cmp x c of
LT) if C = hi then hhAB ; b; C i; c; Di

else case splay x C of
hC 1; c 0; C 2i) hhAB ; b; C 1i; c 0; hC 2; c; Dii j

EQ) hhAB ; b; C i; c; Di j
GT) if D = hi then hhAB ; b; C i; c; Di

else case splay x D of
hD1; d ; D2i) hhhAB ; b; C i; c; D1i; d ; D2i)

Fig. 21.1. Function splay

are inconvenient in functional languages. For the moment we ignore this as-
pect and stick with the above isin because it has the type required by the
Set ADT.

The implementation of insert x t in Figure 21.2 is straightforward: let hl ;
a ; ri = splay x t ; if a = x, return hl ; a ; ri; otherwise make x the root of a
suitable recombination of l, a and r.

The implementation of delete x t in Figure 21.3 starts similarly: let hl ; a ;
ri = splay x t ; if a 6= x, return hl ; a ; ri. Otherwise follow the deletion-by-
replacing paradigm (Section 5.2.1): if l 6= hi, splay the maximal element m
in l to the root and replace x with it. Note that splay_max returns a tree
that is just a glorified pair: if t 6= hi then splay_max t is of the form ht 0;
m ; hii. The definition splay_max hi = hi is not really needed (splay_max
is always called with non-hi argument) but some lemmas can be stated more
slickly with this definition.

21.2 Correctness 227

insert :: 0a) 0a tree) 0a tree

insert x t
= (if t = hi then hhi; x ; hii

else case splay x t of
hl ; a ; ri) case cmp x a of

LT) hl ; x ; hhi; a ; rii j
EQ) hl ; a ; ri j
GT) hhl ; a ; hii; x ; ri)

Fig. 21.2. Function insert

delete :: 0a) 0a tree) 0a tree

delete x t
= (if t = hi then hi

else case splay x t of
hl ; a ; ri)

if x 6= a then hl ; a ; ri
else if l = hi then r

else case splay_max l of hl 0; m ; _i) hl 0; m ; ri)

splay_max :: 0a tree) 0a tree

splay_max hi = hi

splay_max hA; a ; hii = hA; a ; hii
splay_max hA; a ; hB ; b; CDii
= (if CD = hi then hhA; a ; Bi; b; hii

else case splay_max CD of hC ; c; Di) hhhA; a ; Bi; b; C i; c; Di)

Fig. 21.3. Functions delete and splay_max

21.2 Correctness

The inorder approach of Section 5.4 applies. Because the details are a bit
different (everything is reduced to splay) we present the top-level structure.

The following easy inductive properties are used implicitly in a number of
subsequent proofs:

splay a t = hi ! t = hi
splay_max t = hi ! t = hi
Correctness of isin

sorted (inorder t) �! isin t x = (x 2 set (inorder t))

228 21 Splay Trees

follows directly from this easy inductive property of splay :

splay x t = hl ; a ; ri ^ sorted (inorder t) �!
(x 2 set (inorder t)) = (x = a)

Correctness of insert and delete

sorted (inorder t) �! inorder (insert x t) = ins_list x (inorder t)

sorted (inorder t) �! inorder (delete x t) = del_list x (inorder t)

relies on the following characteristic inductive properties of splay :

inorder (splay x t) = inorder t (21.1)

sorted (inorder t) ^ splay x t = hl ; a ; ri �!
sorted (inorder l @ x # inorder r)

Correctness of delete also needs the inductive property

splay_max t = hl ; a ; ri ^ sorted (inorder t) �!
inorder l @ [a] = inorder t ^ r = hi
Note that inorder (splay x t) = inorder t is also necessary to justify the

proper isin that returns the newly created tree as well.
Automation of the above proofs requires the lemmas in Figure 5.2 together

with a few additional lemmas about sorted, ins_list and del_list that can be
found in the Isabelle proofs.

Recall from Section 5.4 that correctness of insert and delete implies that
they preserve bst = sorted � inorder. Similarly, (21.1) implies that splay
preserves bst. Thus we may assume the invariant bst in the amortized analysis.

These two easy size lemmas are used implicitly below:

jsplay a t j = jt j jsplay_max t j = jt j

21.3 Amortized Analysis

This section shows that splay, insertion and deletion all have amortized log-
arithmic complexity.

We define the potential � of a tree as the sum of the potentials ' of all
nodes:

� :: 0a tree) real

� hi = 0

� hl ; a ; ri = ' hl ; a ; ri + � l + � r

' t � log2 jt j1

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Splay_Tree_Analysis.html

21.3 Amortized Analysis 229

The central result is the amortized complexity of splay. Function Tsplay is
shown in Appendix B.7. We follow (19.1) and define

Asplay a t = Tsplay a t + � (splay a t) � � t

First we consider the case where the element is in the tree:

Theorem 21.1. bst t ^ hl ; x ; ri 2 subtrees t �!
Asplay x t � 3 � (' t � ' hl ; x ; ri) + 1

Proof by induction on the computation of splay. The base cases involving hi
are impossible. For example, consider the call splay x t where t = hhi; b; C i
and x < b: from hl ; x ; ri 2 subtrees t it follows that x 2 set_tree t but
because bst t and x < b this implies that x 2 set_tree hi, a contradiction.
There are three feasible base cases. The case t = h_; x ; _i is easy. We consider
one of the two other symmetric cases. Let t = hhA; x ; Bi; b; C i and t 0 =
splay x t = hA; x ; hB ; b; C ii.

Asplay x t = � t 0 � � t + 1 by definition of Asplay and Tsplay

= ' t 0 + ' hB ; b; C i � ' t � ' hA; x ; Bi + 1 by definition of �
= ' hB ; b; C i � ' hA; x ; Bi + 1 by definition of '
� ' t � ' hA; x ; Bi + 1 because ' hB ; b; C i � ' t
� 3 � (' t � ' hA; x ; Bi) + 1 because ' hA; x ; Bi � ' t
= 3 � (' t � ' hl ; x ; ri) + 1 because bst t ^ hl ; x ; ri 2 subtrees t

There are four inductive cases. We consider two of them, the other two
are symmetric variants. First the so-called zig-zig case:

b
= n

a C
= n

A B

 b
= n

a C
= n

a0 B
= n

A1 A2

 a0

= n
A1 a

= n
A2 b

= n
B C

This is the case where x < a < b and A 6= hi. On the left we have the
input and on the right the output of splay x. Because A 6= hi, splay x A =

hA1; a 0; A2i =: A 0 for some A1, a 0 and A2. The intermediate tree is obtained
by replacing A by A 0. This tree is shown for illustration purpose only; in the
algorithm the right tree is constructed directly from the left one. Let X = hl ;
x ; ri. Clearly X 2 subtrees A. We abbreviate compound trees like hA; a ; Bi
by the names of their subtrees, in this case AB. First note that

' A1A2BC = ' ABC (�)

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Splay_Tree_Analysis.html

230 21 Splay Trees

because jA 0j = jsplay x Aj = jAj. We can now prove the claim:

Asplay x ABC = Tsplay x A + 1 + � A1A2BC � � ABC
= Tsplay x A + 1 + � A1 + � A2 + ' A2BC + ' BC � � A � ' AB

by (�) and definition of �
= Tsplay x A + � A 0 � ' A 0 � � A + ' A2BC + ' BC � ' AB + 1

= Asplay x A + ' A2BC + ' BC � ' AB � ' A 0 + 1

� 3 � ' A + ' A2BC + ' BC � ' AB � ' A 0 � 3 � ' X + 2

by IH and X 2 subtrees A
= 2 � ' A + ' A2BC + ' BC � ' AB � 3 � ' X + 2

because ' A = ' A 0

< ' A + ' A2BC + ' BC � 3 � ' X + 2 because ' A < ' AB
< ' A2BC + 2 � ' ABC � 3 � ' X + 1

because 1 + lg x + lg y < 2 � lg (x + y) if x; y > 0

< 3 � (' ABC � ' X) + 1 because ' A2BC < ' ABC

Now we consider the so-called zig-zag case:

b
= n

a C
= n

A B

 b
= n

a C
= n

A b0

= n
B1 B2

 b’
� �

a b
= n = n

A B1 B2 C

This is the case where a < x < b and B 6= hi. On the left we have the
input and on the right the output of splay x. Because B 6= hi, splay x B =

hB1; b 0; B2i =: B 0 for some B1, b 0 and B2. The intermediate tree is obtained
by replacing B by B 0. Let X = hl ; x ; ri. Clearly X 2 subtrees B. The proof
is very similar to the zig-zig case, the same naming conventions apply and we
omit some details:

Asplay x ABC = Tsplay x A + 1 + � AB1B2C � � ABC
= Asplay x B + ' AB1 + ' B2C � ' AB � ' B 0 + 1

using ' AB1B2C = ' ABC
� 3 � ' B + ' AB1 + ' B2C � ' AB � ' B 0 � 3 � ' X + 2

by IH and X 2 subtrees B
= 2 � ' B + ' AB1 + ' B2C � ' AB � 3 � ' X + 2

because ' B = ' B 0

< ' B + ' AB1 + ' B2C � 3 � ' X + 2 because ' B < ' AB
< ' B + 2 � ' ABC � 3 � ' X + 1

because 1 + lg x + lg y < 2 � lg (x + y) if x; y > 0

< 3 � (' ABC � ' X) + 1 because ' B < ' ABC ut

21.4 Exercises 231

Because ' hl ; x ; ri � 1, the above theorem implies

Corollary 21.2. bst t ^ x 2 set_tree t �! Asplay x t � 3 � (' t � 1) + 1

If x is not in the tree we show that there is a y in the tree such that
splaying with y would produce the same tree in the same time:

Lemma 21.3. t 6= hi ^ bst t �!
(9 y2set_tree t : splay y t = splay x t ^ Tsplay y t = Tsplay x t)

Element y is the last element in the tree that the search for x encounters
before it hits a leaf. Naturally, the proof is by induction on the computation
of splay.

Combining this lemma with Corollary 21.2 yields the final unconditional
amortized complexity of splay on BSTs:

Corollary 21.4. bst t �! Asplay x t � 3 � ' t + 1

The “� 1” has disappeared to accommodate the case t = hi.
The amortized analysis of insertion is straightforward now. From the amor-

tized complexity of splay it follows that

Lemma 21.5. bst t �! Tinsert x t + � (insert x t) � � t � 4 � ' t + 3

We omit the proof which is largely an exercise in simple algebraic manipula-
tions.

The amortized analysis of deletion is similar but a bit more complicated
because of the additional function splay_max whose amortized running time
is defined as usual:

Asplay_max t = Tsplay_max t + � (splay_max t) � � t

An inductive proof and then a simple case analysis yield

t 6= hi �! Asplay_max t � 3 � (' t � 1) + 1

Asplay_max t � 3 � ' t + 1

Based on the canonical definitions of Tdelete and Tsplay_max the amortized
logarithmic complexity of delete follows:

bst t �! Tdelete a t + � (delete a t) � � t � 6 � ' t + 3

A running time analysis of isin is trivial because isin is just splay followed
by a constant-time test.

21.4 Exercises

Exercise 21.1. Find a sequence of numbers n1, n2, . . .nk such that the
insertion of theses numbers one by one creates a tree of height k.

232 21 Splay Trees

Bibliographic Remarks

Splay trees were invented and analyzed by Sleator and Tarjan [70] for which
they received the 1999 ACM Paris Kanellakis Theory and Practice Award [38].
In addition to the amortized complexity as shown above they proved that
splay trees perform as well as static BSTs (the Static Optimality Theorem)
and conjectured that, roughly speaking, they even perform as well as any other
BST-based algorithm. This Dynamic Optimality Conjecture is still open.

This chapter is based on earlier publications [69, 53, 54, 55].

22

Skew Heaps

22.1 Implementation of ADT Priority_Queue_Merge

Skew heaps are heaps in the sense of Section 14.1 and implement mergeable
priority queues. Skew heaps can be viewed as a self-adjusting form of leftist
heaps that attempts to maintain balance by unconditionally swapping all
nodes in the merge path when merging two heaps:

merge :: 0a tree) 0a tree) 0a tree

merge hi t = t
merge t hi = t
merge (hl1; a1; r1i =: t1) (hl2; a2; r2i =: t2)
= (if a1 � a2 then hmerge t2 r1; a1; l1i else hmerge t1 r2; a2; l2i)

The remaining operations are defined as in Section 14.1.
The following properties of merge have easy inductive proofs:

jmerge t1 t2j = jt1j + jt2j
mset_tree (merge t1 t2) = mset_tree t1 + mset_tree t2
heap t1 ^ heap t2 �! heap (merge t1 t2)

Now it is straightforward to prove the correctness of the implementation w.r.t.
the ADT Priority_Queue_Merge.

Skew heaps attempt to maintain balance, but this does not always work:

Exercise 22.1. Find a sequence of numbers n1, n2, . . .nk such that the
insertion of theses numbers one by one creates a tree of height k. Prove that
this sequence will produce a tree of height k.

Nevertheless, insertion and deletion have amortized logarithmic complexity.

https://devel.isa-afp.org/browser_info/current/AFP/Skew_Heap/Skew_Heap.html

234 22 Skew Heaps

22.2 Amortized Analysis

The key is the definition of the potential. It counts the number of right-
heavy (rh) nodes:

� :: 0a tree) int

� hi = 0

� hl ; _; ri = � l + � r + rh l r

rh :: 0a tree) 0a tree) nat

rh l r = (if jl j < jr j then 1 else 0)

The rough intuition: because merge descends along the right spine, the more
right-heavy nodes a tree contains, the longer merge takes.

Two auxiliary functions count the number of right-heavy nodes on the left
spine (lrh) and left-heavy (= not right-heavy) nodes on the right spine (rlh):

lrh :: 0a tree) nat

lrh hi = 0

lrh hl ; _; ri = rh l r + lrh l

rlh :: 0a tree) nat

rlh hi = 0

rlh hl ; _; ri = 1 � rh l r + rlh r

The following properties have automatic inductive proofs

2lrh t � jt j + 1 2rlh t � jt j + 1

and imply

lrh t � lg jt j1 rlh t � lg jt j1 (22.1)

Now we are ready for the amortized analysis. All canonical time functions
can be found in Appendix B.8. The key lemma is this:

Lemma 22.1. Tmerge t1 t2 + � (merge t1 t2) � � t1 � � t2
� lrh (merge t1 t2) + rlh t1 + rlh t2 + 1

Proof by induction on the computation of merge. We consider only the node-
node case: let t1 = hl1; a1; r1i and t2 = hl2; a2; r2i. W.l.o.g. assume a1 �
a2. Let m = merge t2 r1.

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Skew_Heap_Analysis.html

22.2 Amortized Analysis 235

Tmerge t1 t2 + � (merge t1 t2) � � t1 � � t2
= Tmerge t2 r1 + 1 + � m + � l1 + rh m l1 � � t1 � � t2
= Tmerge t2 r1 + 1 + � m + rh m l1 � � r1 � rh l1 r1 � � t2
� lrh m + rlh t2 + rlh r1 + rh m l1 + 2 � rh l1 r1 by IH
= lrh m + rlh t2 + rlh t1 + rh m l1 + 1

= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1 ut
As a consequence we can prove the following logarithmic upper bound on the
amortized complexity of merge :

Tmerge t1 t2 + � (merge t1 t2) � � t1 � � t2
� lrh (merge t1 t2) + rlh t1 + rlh t2 + 1 by Lemma 22.1
� lg jmerge t1 t2j1 + lg jt1j1 + lg jt2j1 + 1 by (22.1)
� lg (jt1j1 + jt2j1 � 1) + lg jt1j1 + lg jt2j1 + 1

because jmerge t1 t2j = jt1j + jt2j
� lg (jt1j1 + jt2j1) + 2 � lg (jt1j1 + jt2j1) + 1

because lg x + lg y � 2 � lg (x + y) if x ;y > 0

= 3 � lg (jt1j1 + jt2j1) + 1

The amortized complexity of insertion and deletion follows easily from the
complexity of merge :

Tinsert a t + � (insert a t) � � t � 3 � lg (jt j1 + 2) + 2

Tdel_min t + � (del_min t) � � t � 3 � lg (jt j1 + 2) + 2

Bibliographic Remarks

Skew heaps were invented by Sleator and Tarjan [71] as one of the first self-
organizing data structures. Their presentation was imperative. Our presenta-
tion follows earlier work by Nipkow [53, 55] based on the functional account
by Kaldewaij and Schoenmakers [37].

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Skew_Heap_Analysis.html

23

Pairing Heaps

The pairing heap is another form of a self-adjusting priority queue. Sec-
tion 23.1 presents an intuitive version of pairing heaps based on lists. In the
rest of the chapter we change to a slightly different presentation because it
leads to a more succinct amortized analysis.

23.1 Implementation via Lists

A pairing heap is a heap in the sense that it is a tree with the minimal
element at the root. Except that it is not a binary tree but a tree where each
node has a list of children:

datatype 0a heap = Empty j Hp 0a (0a heap list)

The abstraction function to multisets and the invariant follow the heap
paradigm:

mset_heap :: 0a heap) 0a multiset

mset_heap Empty = {{}}
mset_heap (Hp x hs) = {{x}} +

P
#
(mset (map mset_heap hs))

pheap :: 0a heap) bool

pheap Empty = True
pheap (Hp x hs)
= (8 h2set hs : (8 y2#mset_heap h : x � y) ^ pheap h)

Note that pheap is not the full invariant: moreover, Empty does not occur
inside a non-empty heap.

https://devel.isa-afp.org/browser_info/current/AFP/Pairing_Heap/Pairing_Heap_List1.html

238 23 Pairing Heaps

The implementations of empty and get_min are obvious and insert fol-
lows the standard heap paradigm:

empty = Empty

get_min :: 0a heap) 0a

get_min (Hp x _) = x

insert :: 0a) 0a heap) 0a heap

insert x h = merge (Hp x []) h

Function merge is not recursive (as in binary heaps) but simply adds one of
the two heaps to the front of the top-level heaps of the other, depending on
the root value:

merge :: 0a heap) 0a heap) 0a heap

merge h Empty = h
merge Empty h = h
merge (Hp x hsx =: hx) (Hp y hsy =: hy)
= (if x < y then Hp x (hy # hsx) else Hp y (hx # hsy))

Thus merge and insert have constant running time. All the work is offloaded
on del_min which just calls merge_pairs :

del_min :: 0a heap) 0a heap

del_min Empty = Empty
del_min (Hp _ hs) = merge_pairs hs

merge_pairs :: 0a heap list) 0a heap

merge_pairs [] = Empty
merge_pairs [h] = h
merge_pairs (h1 # h2 # hs)
= merge (merge h1 h2) (merge_pairs hs)

Function merge_pairs is a compact way of expressing a two pass algorithm:
on the first pass from left to right, it merges pairs of adjacent heaps (hence
“pairing heap”) and on the second pass it merges the results in a cascade from
right to left. A more readable formulation with the same running time is this
one:

23.2 Amortized Analysis 239

del_min :: 0a heap) 0a heap

del_min Empty = Empty
del_min (Hp _ hs) = pass2 (pass1 hs)

pass1 :: 0a heap list) 0a heap list

pass1 (h1 # h2 # hs) = merge h1 h2 # pass1 hs
pass1 hs = hs

pass2 :: 0a heap list) 0a heap

pass2 [] = Empty
pass2 (h # hs) = merge h (pass2 hs)

The proof of pass2 (pass1 hs) = merge_pairs hs is an easy induction.
Clearly del_min can take linear time but it will turn out that the constant-

time insert saves enough to guarantee amortized logarithmic complexity for
both insertion and deletion.

We base the correctness proofs on the merge_pairs version of del_min.
From the following lemmas (all proofs are routine inductions)

h 6= Empty �! get_min h 2# mset_heap h

h 6= Empty ^ pheap h ^ x 2# mset_heap h �! get_min h � x

mset_heap (merge h1 h2) = mset_heap h1 + mset_heap h2

mset_heap (merge_pairs hs)
=
P

#
(image_mset mset_heap (mset hs))

h 6= Empty �!
mset_heap (del_min h) = mset_heap h � {{get_min h}}
pheap h1 ^ pheap h2 �! pheap (merge h1 h2)

(8 h2set hs : pheap h) �! pheap (merge_pairs hs)

pheap h �! pheap (del_min h)

the properties in the specifications Priority_Queue(_Merge) follow easily.

23.2 Amortized Analysis

The amortized analysis of pairing heaps is slightly simplified if we replace the
above type of heaps by trees as follows: a heap Hp x hs is expressed as the
tree hhs ; x ; hii and a list of heaps [Hp x 1 hs1; Hp x 2 hs2; :::] is expressed

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html
https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html

240 23 Pairing Heaps

empty = hi

get_min :: 0a tree) 0a

get_min h_; x ; _i = x

link :: 0a tree) 0a tree

link hhsx ; x ; hhsy ; y ; hsii
= (if x < y then hhhsy ; y ; hsx i; x ; hsi else hhhsx ; x ; hsyi; y ; hsi)
link hp = hp

pass1 :: 0a tree) 0a tree

pass1 hhsx ; x ; hhsy ; y ; hsii = link hhsx ; x ; hhsy ; y ; pass1 hsii
pass1 hp = hp

pass2 :: 0a tree) 0a tree

pass2 hhsx ; x ; hsi = link hhsx ; x ; pass2 hsi
pass2 hi = hi

get_min :: 0a tree) 0a

get_min h_; x ; _i = x

merge :: 0a tree) 0a tree) 0a tree

merge hi hp = hp
merge hp hi = hp
merge hhsx ; x ; hii hhsy ; y ; hii = link hhsx ; x ; hhsy ; y ; hiii

insert :: 0a) 0a tree) 0a tree

insert x hp = merge hhi; x ; hii hp

Fig. 23.1. Pairing heaps via trees

as the tree hhs1; x 1; hhs2; x 2; :::i:::i. This simplifies the analysis because we
now have to deal only with a single type, trees.

The code for the tree-representation of pairing heaps is shown in Fig-
ure 23.1. We work with the pass1/pass2 version of del_min. The correctness
proof is very similar to what we saw in the previous section. We merely display
the two invariants:

is_root :: 0a tree) bool

is_root hp = (case hp of hi) True j h_; _; ri) r = hi)

23.2 Amortized Analysis 241

pheap :: 0a tree) bool

pheap hi = True
pheap hl ; x ; ri = ((8 y2set_tree l : x � y) ^ pheap l ^ pheap r)

Now we turn to the amortized analysis. The potential of a tree is the sum
of the logarithms of the sizes of the subtrees:

� :: 0a tree) real

� hi = 0

� hl ; x ; ri = lg jhl ; x ; rij + � l + � r

These easy inductive size-properties are frequently used implicitly below:

jlink hpj = jhpj
jpass1 hpj = jhpj
jpass2 hpj = jhpj
is_root h1 ^ is_root h2 �! jmerge h1 h2j = jh1j + jh2j

23.2.1 Potential Differences

We can now analyze the differences in potential caused by all the queue op-
erations. In a separate step we will derive their amortized complexities.

For insertion, the following upper bound follows trivially from the defini-
tions:

Lemma 23.1. is_root hp �! � (insert x hp) � � hp � lg (jhpj + 1)

For merge it needs a bit more work:

Lemma 23.2. h1 = hhs1; x 1; hii ^ h2 = hhs2; x 2; hii �!
� (merge h1 h2) � � h1 � � h2 � lg (jh1j + jh2j) + 1

Proof. From

� (merge h1 h2)

= � (link hhs1; x 1; h2i)
= � hs1 + � hs2 + lg (jhs1j + jhs2j + 1) + lg (jhs1j + jhs2j + 2)

= � hs1 + � hs2 + lg (jhs1j + jhs2j + 1) + lg (jh1j + jh2j)
it follows that

� (merge h1 h2) � � h1 � � h2

= lg (jhs1j + jhs2j + 1) + lg (jh1j + jh2j)
� lg (jhs1j + 1) � lg (jhs2j + 1)

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html

242 23 Pairing Heaps

� lg (jh1j + jh2j) + 1

because lg (1 + x + y) � 1 + lg (1 + x) + lg (1 + y) if x ;y � 0

ut

Now we come to the core of the proof, the analysis of del_min. Its running
time is linear in the number of nodes reachable by descending to the right
(starting from the left child of the root). We denote this metric by len :

len :: 0a tree) nat

len hi = 0

len h_; _; ri = 1 + len r

Therefore we have to show that the potential change compensates for this
linear work. Our main goal is this:

Theorem 23.3. � (del_min hhs ; x ; hii) � � hhs ; x ; hii
� 2 � lg (jhs j + 1) � len hs + 2

It will be proved in two steps: First we show that pass1 frees enough potential
to compensate for the work linear in len hs and increases the potential only
by a logarithmic term. Then we show that the increase due to pass2 is also
only at most logarithmic. Combining these results one easily shows that the
amortized running time of del_min is indeed logarithmic.

First we analyze the potential difference caused by pass1:

Lemma 23.4. � (pass1 hs) � � hs � 2 � lg (jhs j + 1) � len hs + 2

Proof by induction on the computation of pass1. The base cases are trivial.
We focus on the induction step. Let t = hhs1; x ; hhs2; y ; hsii, n1 = jhs1j,
n2 = jhs2j and m = jhs j.

� (pass1 t) � � t
= lg (n1 + n2 + 1) � lg (n2 + m + 1) + � (pass1 hs) � � hs
� lg (n1 + n2 + 1) � lg (n2 + m + 1)

+ 2 � lg (m + 1) � len hs + 2 by IH
� 2 � lg (n1 + n2 + m + 1) � lg (n2 + m + 1) + lg (m + 1)

� len hs because lg x + lg y + 2 � 2 � lg (x + y) if x ;y > 0

� 2 � lg (n1 + n2 + m + 2) � len hs
= 2 � lg jt j � len t + 2

� 2 � lg (jt j + 1) � len t + 2 ut
Now we turn to pass2:

Lemma 23.5. hs 6= hi �! � (pass2 hs) � � hs � lg jhs j

23.2 Amortized Analysis 243

Proof by induction on hs. The base cases are trivial. The induction step (for
hhs1; x ; hsi) is trivial if hs = hi. Assume hs = hhs2; y ; ri. Now we need one
more property of pass2:

9 hs3 z : pass2 hhs2; y ; ri = hhs3; z ; hii
The proof is a straightforward induction on r. This implies jhs3j + 1 = jhs j
and thus

� (link hhs1; x ; pass2 hsi) � � hs1 � � (pass2 hs)
= lg (jhs1j + jhs j + 1) + lg (jhs1j + jhs j) � lg jhs j (�)

Thus the overall claim follows:

� (pass2 hhs1; x ; hsi) � � hhs1; x ; hsi
= � (link hhs1; x ; pass2 hsi) � � hs1 � � hs � lg (jhs1j + jhs j + 1)

= � (pass2 hs) � � hs + lg (jhs1j + jhs j) � lg jhs j by (�)
� lg (jhs1j + jhs j) by IH
� lg jhhs1; x ; hsij ut

Corollary 23.6. � (pass2 hs) � � hs � lg (jhs j + 1)

Finally we can prove Theorem 23.3:

� (del_min hhs ; x ; hii) � � hhs ; x ; hii
= � (pass2 (pass1 hs)) � lg (jhs j + 1) � � hs
� � (pass1 hs) � � hs by Corollary 23.6
� 2 � lg (jhs j + 1) � len hs + 2 by Lemma 23.4

23.2.2 Amortized Running Times

The canonical running time functions are displayed in Appendix B.9. It is
now straightforward to derive these amortized running times:

is_root h �! Tinsert a h + � (insert a h) � � h � lg (jh j + 1) + 1

is_root h1 ^ is_root h2 �!
Tmerge h1 h2 + � (merge h1 h2) � � h1 � � h2

� lg (jh1j + jh2j + 1) + 2

They follow from the corresponding lemmas 23.1 and 23.2.
Combining this inductive upper bound for the running time of the two

passes

Tpass2 (pass1 hs1) + Tpass1 hs1 � len hs1 + 2

with Theorem 23.3 yields the third and final amortized running time:

is_root h �!
Tdel_min h + � (del_min h) � � h � 2 � lg (jh j + 1) + 5

https://devel.isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html

244 23 Pairing Heaps

Thus we could prove that insertion, merging and deletion all have amor-
tized logarithmic running times.

Bibliographic Remarks

Pairing heaps were invented by Fredman et al. [21] as a simpler but compet-
itive alternative to Fibonacci heaps. The authors gave the amortized analysis
presented above and conjectured that it can be improved. Later research con-
firmed this [33, 65, 34] but the final analysis is still open. An empirical study
[46] showed that pairing heaps do indeed outperform Fibonacci heaps in prac-
tice. This chapter is based on an article by Nipkow and Brinkop [55].

Part V

Appendix

A

List Library

The following functions on lists are predefined:

length :: 0a list) nat

j[]j = 0

jx # xs j = jxs j + 1

(@) :: 0a list) 0a list) 0a list

[] @ ys = ys
(x # xs) @ ys = x # xs @ ys

set :: 0a list) 0a set

set [] = fg
set (x # xs) = fxg [set xs

map :: (0a) 0b)) 0a list) 0b list

map f [] = []

map f (x # xs) = f x # map f xs

filter :: (0a) bool)) 0a list) 0a list

filter p [] = []

filter p (x # xs) = (if p x then x # filter p xs else filter p xs)

take :: nat) 0a list) 0a list

take _ [] = []

take n (x # xs) = (case n of 0) [] j m + 1) x # take m xs)

248 A List Library

drop :: nat) 0a list) 0a list

drop _ [] = []

drop n (x # xs) = (case n of 0) x # xs j m + 1) drop m xs)

hd :: 0a list) 0a

hd (x # xs) = x

tl :: 0a list) 0a list

tl [] = []

tl (x # xs) = xs

butlast :: 0a list) 0a list

butlast [] = []

butlast (x # xs) = (if xs = [] then [] else x # butlast xs)

rev :: 0a list) 0a list

rev [] = []

rev (x # xs) = rev xs @ [x]

(!) :: 0a list) nat) 0a

(x # xs) ! n = (case n of 0) x j k + 1) xs ! k)

list_update :: 0a list) nat) 0a) 0a list

[][_ := _] = []

(x # xs)[i := v] = (case i of 0) v # xs j j + 1) x # xs [j := v])

upt :: nat) nat) nat list

[_::<0] = []

[i ::<j + 1] = (if i � j then [i ::<j] @ [j] else [])

replicate :: nat) 0a) 0a list

replicate 0 _ = []

replicate (n + 1) x = x # replicate n x

sum_list :: 0a list) 0a

sum_list [] = 0

sum_list (x # xs) = x + sum_list xs

A List Library 249

min_list :: 0a list) 0a

min_list (x # xs)
= (case xs of []) x j _# _) min x (min_list xs))

sorted_wrt :: (0a) 0a) bool)) 0a list) bool

sorted_wrt P [] = True
sorted_wrt P (x # ys) = ((8 y2set ys : P x y) ^ sorted_wrt P ys)

B

Time Functions

B.1 Lists

Tlength :: 0a list) nat

Tlength [] = 1

Tlength (_ # xs) = Tlength xs + 1

Tmap :: (0a) nat)) 0a list) nat

Tmap _ [] = 1

Tmap Tf (x # xs) = Tf x + Tmap Tf xs + 1

Tfilter :: (0a) nat)) 0a list) nat

Tfilter _ [] = 1

Tfilter Tp (x # xs) = Tp x + Tfilter Tp xs + 1

Ttake :: nat) 0a list) nat

Ttake _ [] = 1

Ttake n (_ # xs) = (case n of 0) 1 j n 0 + 1) Ttake n 0 xs + 1)

Tdrop :: nat) 0a list) nat

Tdrop _ [] = 1

Tdrop n (_ # xs) = (case n of 0) 1 j n 0 + 1) Tdrop n 0 xs + 1)

Tlength xs = jxs j + 1

Tmap Tf xs = (
P

x xs Tf x) + jxs j + 1

Tfilter Tp xs = (
P

x xs Tp x) + jxs j + 1

Ttake n xs = min n jxs j + 1

Tdrop n xs = min n jxs j + 1

252 B Time Functions

B.2 Selection

Tchop :: nat) 0a list) nat

Tchop 0 _ = 1

Tchop _ [] = 1

Tchop n xs = Ttake n xs + Tdrop n xs + Tchop n (drop n xs)

Tpartition3 :: 0a) 0a list) nat

Tpartition3 _ [] = 1

Tpartition3 x (_ # ys) = Tpartition3 x ys + 1

Tslow_select :: nat) 0a list) nat

Tslow_select k xs = Tisort xs + Tnth (isort xs) k + 1

Tslow_median :: 0a list) nat

Tslow_median xs = Tslow_select ((jxs j � 1) div 2) xs + 1

Tchop d xs � 5 � jxs j + 1

Tpartition3 x xs = jxs j + 1

Tslow_select k xs � jxs j2 + 3 � jxs j + 3

Tslow_median xs � jxs j2 + 3 � jxs j + 4

B.3 2-3 Trees

Tjoin_adj ::
0a tree23s) nat

Tjoin_adj (TTs _ _ (T _)) = 1

Tjoin_adj (TTs _ _ (TTs _ _ (T _))) = 1

Tjoin_adj (TTs _ _ (TTs _ _ ts)) = Tjoin_adj ts + 1

Tjoin_adj ::
0a tree23s) nat

Tjoin_adj (TTs _ _ (T _)) = 1

Tjoin_adj (TTs _ _ (TTs _ _ (T _))) = 1

Tjoin_adj (TTs _ _ (TTs _ _ ts)) = Tjoin_adj ts + 1

Ttree23_of_list :: 0a list) nat

Ttree23_of_list as = Tleaves as + Tjoin_all (leaves as) + 1

B.5 Binomial Heaps 253

B.4 Leftist Heaps

Tmerge :: (0a � nat) tree) (0a � nat) tree) nat

Tmerge hi t = 1

Tmerge t hi = 1

Tmerge (hl1; (a1; n1); r1i =: t1) (hl2; (a2; n2); r2i =: t2)
= (if a1 � a2 then Tmerge r1 t2 else Tmerge t1 r2) + 1

Tinsert :: 0a) (0a � nat) tree) nat

Tinsert x t = Tmerge hhi; (x ; 1); hii t + 1

Tdel_min :: (0a � nat) tree) nat

Tdel_min hi = 1

Tdel_min hl ; _; ri = Tmerge l r + 1

B.5 Binomial Heaps

Tlink :: 0a tree) 0a tree) nat

Tlink _ _ = 1

Tins_tree :: 0a tree) 0a tree list) nat

Tins_tree _ [] = 1

Tins_tree t1 (t2 # ts)
= (if rank t1 < rank t2 then 1

else Tlink t1 t2 + Tins_tree (link t1 t2) ts)

Tinsert :: 0a) 0a tree list) nat

Tinsert x ts = Tins_tree (Node 0 x []) ts + 1

Tmerge :: 0a tree list) 0a tree list) nat

Tmerge _ [] = 1

Tmerge [] (_ # _) = 1

Tmerge (t1 # ts1 =: h1) (t2 # ts2 =: h2)

= 1 +

(if rank t1 < rank t2 then Tmerge ts1 h2

254 B Time Functions

else if rank t2 < rank t1 then Tmerge h1 ts2
else Tins_tree (link t1 t2) (merge ts1 ts2) + Tmerge ts1 ts2)

Tget_min :: 0a tree list) nat

Tget_min [_] = 1

Tget_min (_ # v # va) = 1 + Tget_min (v # va)

Tget_min_rest :: 0a tree list) nat

Tget_min_rest [_] = 1

Tget_min_rest (_ # v # va) = 1 + Tget_min_rest (v # va)

Trev :: 0a list) nat

Trev xs = jxs j + 1

Tdel_min :: 0a tree list) nat

Tdel_min ts
= Tget_min_rest ts +

(case get_min_rest ts of
(Node _ _ ts1; ts2)) Trev ts1 + Tmerge (rev ts1) ts2) +

1

B.6 Queues

Tnorm :: 0a list � 0a list) nat

Tnorm (fs ; rs) = (if fs = [] then Titrev rs [] else 0) + 1

Tenq :: 0a) 0a list � 0a list) nat

Tenq a (fs ; rs) = Tnorm (fs ; a # rs) + 1

Tdeq :: 0a list � 0a list) nat

Tdeq (fs ; rs) = (if fs = [] then 0 else Tnorm (tl fs ; rs)) + 1

Tfirst :: 0a list � 0a list) nat

Tfirst (_ # _; _) = 1

B.7 Splay Trees 255

Tis_empty :: 0a list � 0a list) nat

Tis_empty (_; _) = 1

B.7 Splay Trees

Tsplay :: 0a) 0a tree) nat

Tsplay _ hi = 1

Tsplay x hAB ; b; CDi
= (case cmp x b of

LT) case AB of
hi) 1 j
hA; a ; Bi) case cmp x a of

LT) if A = hi then 1 else Tsplay x A + 1 j
EQ) 1 j
GT) if B = hi then 1 else Tsplay x B + 1 j

EQ) 1 j
GT) case CD of

hi) 1 j
hC ; c; Di) case cmp x c of

LT) if C = hi then 1 else Tsplay x C + 1 j
EQ) 1 j
GT) if D = hi then 1 else Tsplay x D + 1)

Tsplay_max :: 0a tree) nat

Tsplay_max hi = 1

Tsplay_max h_; _; hii = 1

Tsplay_max h_; _; h_; _; C ii = (if C = hi then 1 else Tsplay_max C + 1)

Tinsert :: 0a) 0a tree) nat

Tinsert x t = 1 + (if t = hi then 0 else Tsplay x t)

Tdelete :: 0a) 0a tree) nat

Tdelete x t
= 1 +

(if t = hi then 0

256 B Time Functions

else Tsplay x t +

(case splay x t of
hl ; a ; _i)

if x 6= a then 0 else if l = hi then 0 else Tsplay_max l))

B.8 Skew Heaps

Tmerge :: 0a tree) 0a tree) nat

Tmerge hi _ = 1

Tmerge _ hi = 1

Tmerge hl1; a1; r1i hl2; a2; r2i
= (if a1 � a2 then Tmerge hl2; a2; r2i r1 else Tmerge hl1; a1; r1i r2) + 1

Tinsert :: 0a) 0a tree) int

Tinsert a t = Tmerge hhi; a ; hii t + 1

Tdel_min :: 0a tree) int

Tdel_min t = (case t of hi) 1 j ht1; _; t2i) Tmerge t1 t2 + 1)

B.9 Pairing Heaps

Tinsert :: 0a) 0a tree) nat

Tinsert _ _ = 1

Tmerge :: 0a tree) 0a tree) nat

Tmerge _ _ = 1

Tdel_min :: 0a tree) nat

Tdel_min hi = 1

Tdel_min hhs ; _; _i = Tpass2 (pass1 hs) + Tpass1 hs + 1

Tpass1 :: 0a tree) nat

B.9 Pairing Heaps 257

Tpass1 h_; _; h_; _; hs 0ii = Tpass1 hs 0 + 1

Tpass1 hi = 1

Tpass1 h_; _; hii = 1

Tpass2 :: 0a tree) nat

Tpass2 hi = 1

Tpass2 h_; _; hsi = Tpass2 hs + 1

C

Notation

C.1 Symbol Table

The following table gives an overview of all the special symbols used in this
book and how to enter them into Isabelle. The second column shows the
full internal name of the symbol; the third column shows additional ASCII
abbreviations. Either of these can be used to input the character using the
auto-completion popup.

Code ASCII abbrev. Comment

� \<lambda> % function abstraction

� \<equiv> == meta equality

6= \<noteq> ~=V
\<And> !! meta 8-quantifier

8 \<forall> ! HOL 8-quantifier

9 \<exists> ?

=) \<Longrightarrow> ==> meta implication

�! \<longrightarrow> –> HOL implication

 ! \<longleftrightarrow> <-> or <-->

) \<Rightarrow> => arrow in function types

 \<leftarrow> <- list comprehension syntax

: \<not> ~

^ \<and> /\ or &

_ \<or> \/ or |

2 \<in> :

=2 \<notin> ~:

[\<union> Un

260 C Notation

Code ASCII abbrev. Comment

\ \<inter> IntS
\<Union> Union or UN

�
union/intersection
of a set of setsT

\<Inter> Inter or INT

� \<subseteq> (=

� \<subset>

� \<le> <=

� \<ge> >=

� \<circ> function composition

� \<times> <*> cartesian prod., prod. type

j \<bar> || absolute value

b \<lfloor> [.
�

floorc \<rfloor> .]

d \<lceil> [.
�

ceilinge \<rceil> .]P
\<Sum> SUM

�
see Section C.3Q

\<Prod> PROD

Note that the symbols “{{” and “}}” that is used for multiset notation in the
book do not exist Isabelle; instead, the ASCII notation {# and #} are used
(cf. Section C.3).

C.2 Subscripts and Superscripts

In addition to this, subscripts and superscripts with a single symbol can be
rendered using two special symbols, \<^sub> and \<^sup>. The term x 0 for
instance can be input as x\<^sub>0.

Longer subscripts and superscripts can be written using the symbols
\<^bsub>...\<^esub> and \<^bsup>...\<^esup>, but this is only rendered
in the somewhat visually displeasing form) : : :)and) : : :)by Isabelle/jEdit.

C.3 Syntactic Sugar 261

C.3 Syntactic Sugar

The following table lists relevant syntactic sugar that is used in the book or
its supplementary material. In some cases, the book notation deviates slightly
from the Isabelle notation for better readability.

The last column gives the formal meaning of the notation (i.e. what it
expands to). In most cases, this is not important for the user to know, but
it can occasionally be useful to find relevant lemmas, or to understand that
e.g. if one encounters the term sum f A, this is just the �-contracted form ofP

x2A: f x.

The variables in the table follow the following convention:

• x and y are of arbitrary type
• m and n are natural numbers
• P and Q are boolean values or predicates
• xs is a list
• A is a set
• M is a multiset

Book notation Isabelle notation Meaning

Arithmetic (for numeric types)

x � y x � y times x y

x = y or x
y x = y divide x y (for type real)

x div y x div y divide x y (for type nat or int)

jx j jx j abs x

bxc bxc floor x

dxe dxe ceiling x

xn x ^ n power x n

Lists

jxs j length xs

[] [] Nil

x # xs x # xs Cons x xs

[x ; y] [x ; y] x # y # []

[m ::<n] [m ::<n] upt m n

xs ! n xs ! n nth xs n

xs [n := y] xs [n := y] list_update xs n y

262 C Notation

Book notation Isabelle notation Meaning

Sets

fg fg empty

fx ; yg fx ; yg insert x (insert y fg)
x 2 A x 2 A Set :member x A

x =2 A x =2 A :(x 2 A)

A [B A [B union A B

A \ B A \ B inter A B

A � B A � B subset_eq A B

A � B A � B subset A B

f ‘ A f ‘ A image f A

f �‘ A f �‘ A vimage f A

fx j P xg fx : P xg Collect P

fx 2 A j P xg fx2A: P xg fx : P x ^ x 2 Ag
ff x y j P x yg ff x y jx y : P x yg fz : 9 x y : z = f x y ^ P x ygS

x2A f x
S

x2A: f x
S

(f ‘ A)

8 x2A: P x 8 x2A: P x Ball A P

9 x2A: P x 9 x2A: P x Bex A P

Multisets

jM j size M

{{}} f#g empty_mset

{{x}} + M add_mset x M

{{x ; y}} f#x ; y#g add_mset x (add_mset y f#g)
x 2# M x 2# M x 2 set_mset M

x =2# M x =2# M :(x 2# M)

{{x 2# M j P x}} f# x2# M : P x #g filter_mset P M

{{f x j x 2# M}} f# f x : x 2# M #g image_mset f M

8 x2#M : P x 8 x2#M : P x 8 x2set_mset M : P x

9 x2#M : P x 9 x2#M : P x 9 x2set_mset M : P x

M �
#
M 0 M �# M 0 subseteq_mset M M 0

C.3 Syntactic Sugar 263

Book notation Isabelle notation Meaning

SumsP
A

P
A sum (�x : x) AP

x2A f x
P

x2A: f x sum f AP
#

M
P

#M sum_mset MP
x2#M f x

P
x2#M : f x sum_mset (image_mset f M)P

x xs f x
P

x xs : f x sum_list (map f xs)

(analogous for products)

Intervals (for ordered types)

fx ::g fx ::g atLeast x

f::yg f::yg atMost y

fx ::yg fx ::yg atLeastAtMost x y

fx ::<yg fx ::<yg atLeastLessThan x y

fx<::yg fx<::yg greaterThanAtMost x y

fx<::<yg fx<::<yg greaterThanLessThan x y

References

1. S. Adams. Efficient sets - A balancing act. J. Funct. Program., 3(4):553–561,
1993.

2. G. M. Adel’son-Vel’skĭi and E. M. Landis. An algorithm for the organization
of information. Soviet Mathematics Doklady, 3:1259–1263, 1962. Translated
from Russian by M.J. Ricci.

3. M. Akra and L. Bazzi. On the solution of linear recurrence equations. Compu-
tational Optimization and Applications, 10(2):195–210, 1998.

4. A. Appel. Efficient verified red-black trees. Unpublished, 2011.
5. C. Ballarin. Tutorial to Locales and Locale Interpretation. https://isabelle.

in.tum.de/doc/locales.pdf.
6. R. Bayer. Symmetric binary B-trees: Data structure and maintenance algo-

rithms. Acta Informatica, 1:290–306, 1972.
7. S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned in

formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin-
Mohring, and L. Théry, editors, Theorem Proving in Higher Order Logics,
TPHOLs’99, volume 1690 of LNCS, pages 19–36. Springer, 1999.

8. J. C. Blanchette. Proof pearl: Mechanizing the textbook proof of Huffman’s
algorithm in Isabelle/HOL. J. Autom. Reasoning, 43(1):1–18, 2009.

9. G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets.
In C. Scheideler and S. Gilbert, editors, Proc. 28th ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2016, pages 253–264. ACM,
2016.

10. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. J. Comput. Syst. Sci, 7(4):448–461, 1973.

11. F. W. Burton. An efficient functional implementation of FIFO queues. Inf.
Process. Lett., 14(5):205–206, 1982.

12. S. Cho and S. Sahni. Weight-biased leftist trees and modified skip lists. ACM
J. Exp. Algorithmics, 3:2, 1998.

13. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

14. C. A. Crane. Linear Lists and Priority Queues as Balanced Binary Trees.
PhD thesis, Stanford University, 1972. STAN-CS-72-259.

https://isabelle.in.tum.de/doc/locales.pdf
https://isabelle.in.tum.de/doc/locales.pdf

266 References

15. R. De La Briandais. File searching using variable length keys. In Papers Pre-
sented at the the March 3-5, 1959, Western Joint Computer Conference,
IRE-AIEE-ACM ’59 (Western), pages 295–298. ACM, 1959.

16. M. Eberl. The number of comparisons in quicksort. Archive of For-
mal Proofs, Mar. 2017. http://isa-afp.org/entries/Quick_Sort_Cost.html,
Formal proof development.

17. M. Eberl. Proving divide and conquer complexities in Isabelle/HOL. Journal
of Automated Reasoning, 58(4):483–508, 2017.

18. M. Eberl, M. W. Haslbeck, and T. Nipkow. Verified analysis of random binary
tree structures. In J. Avigad and A. Mahboubi, editors, Interactive Theorem
Proving (ITP 2018), volume 10895 of LNCS, pages 196–214. Springer, 2018.

19. J.-C. Filliâtre and P. Letouzey. Functors for proofs and programs. In ESOP,
volume 2986 of LNCS, pages 370–384. Springer, 2004.

20. E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.
21. M. L. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: A

new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.
22. K. Germane and M. Might. Deletion: The curse of the red-black tree. J.

Functional Programming, 24(4):423–433, 2014.
23. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In

19th Annual Symposium on Foundations of Computer Science (FOCS 1978),
pages 8–21, 1978.

24. F. Haftmann. Code generation from Isabelle/HOL theories. http://
isabelle.in.tum.de/doc/codegen.pdf.

25. F. Haftmann. Haskell-style type classes with Isabelle/Isar. http://isabelle.
in.tum.de/doc/classes.pdf.

26. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite sys-
tems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic
Programming (FLOPS 2010), volume 6009 of LNCS, pages 103–117. Springer,
2010.

27. Haskell website. https://www.haskell.org.
28. R. Hinze. On constructing 2-3 trees. J. Funct. Program., 28:e19, 2018.
29. C. M. Hoffmann and M. J. O’Donnell. Programming with equations. ACM

Trans. Program. Lang. Syst., 4(1):83–112, 1982.
30. R. Hood and R. Melville. Real-time queue operation in pure LISP. Inf. Process.

Lett., 13(2):50–54, 1981.
31. R. R. Hoogerwoord. A logarithmic implementation of flexible arrays. In R. Bird,

C. Morgan, and J. Woodcock, editors, Mathematics of Program Construction,
volume 669 of LNCS, pages 191–207. Springer, 1992.

32. D. A. Huffman. A method for the construction of minimum-redundancy codes.
In Proceedings of the I.R.E., pages 1098–1101, 1952.

33. J. Iacono. Improved upper bounds for pairing heaps. In M. M. Halldórsson,
editor, Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Al-
gorithm Theory, volume 1851 of LNCS, pages 32–45. Springer, 2000.

34. J. Iacono and M. V. Yagnatinsky. A linear potential function for pairing heaps.
In T. H. Chan, M. Li, and L. Wang, editors, Combinatorial Optimization and
Applications — 10th International Conference, COCOA 2016, volume 10043
of LNCS, pages 489–504. Springer, 2016.

http://isa-afp.org/entries/Quick_Sort_Cost.html
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/classes.pdf
https://www.haskell.org

References 267

35. C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, 2nd edition, 1990.

36. S. Kahrs. Red black trees with types. J. Functional Programming,
11(4):425–432, 2001.

37. A. Kaldewaij and B. Schoenmakers. The derivation of a tighter bound for top-
down skew heaps. Information Processing Letters, 37:265–271, 1991.

38. ACM Paris Kanellakis Theory and Practice Award. https://awards.acm.org/
kanellakis.

39. R. M. Karp. Probabilistic recurrence relations. J. ACM, 41(6):11361150, Nov.
1994.

40. D. J. King. Functional binomial queues. In K. Hammond, D. N. Turner, and
P. M. Sansom, editors, Proceedings of the 1994 Glasgow Workshop on Func-
tional Programming, Workshops in Computing, pages 141–150. Springer, 1994.

41. D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.
42. D. E. Knuth. The Art of Computer Programming, vol. 1: Fundamental Al-

gorithms. Addison–Wesley, 3rd edition, 1997.
43. A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://isabelle.

in.tum.de/doc/functions.pdf.
44. A. Krauss. Partial recursive functions in higher-order logic. In U. Furbach

and N. Shankar, editors, Automated Reasoning,IJCAR 2006, volume 4130 of
LNCS, pages 589–603. Springer, 2006.

45. P. Lammich and T. Nipkow. Proof Pearl: Purely Functional, Simple and
Efficient Priority Search Trees and Applications to Prim and Dijkstra. In
J. Harrison, J. O’Leary, and A. Tolmach, editors, 10th International Con-
ference on Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 23:1–23:18. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

46. D. H. Larkin, S. Sen, and R. E. Tarjan. A back-to-basics empirical study of pri-
ority queues. In C. C. McGeoch and U. Meyer, editors, 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX
2014, pages 61–72. SIAM, 2014.

47. T. Leighton. Notes on better master theorems for divide-and-conquer recur-
rences (MIT lecture notes). 1996.

48. K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching,
volume 1 of EATCS Monographs on Theoretical Computer Science. Springer,
1984.

49. R. Meis, F. Nielsen, and P. Lammich. Binomial heaps and skew binomial
heaps. Archive of Formal Proofs, Oct. 2010. http://isa-afp.org/entries/
Binomial-Heaps.html, Formal proof development.

50. D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4):514–534, 1968.

51. P. Müller. The binomial heap verification challenge in Viper. In P. Müller and
I. Schaefer, editors, Principled Software Development, pages 203–219. Springer,
2018.

52. T. Nipkow. Programming and Proving in Isabelle/HOL. http://isabelle.
in.tum.de/doc/prog-prove.pdf.

https://awards.acm.org/kanellakis
https://awards.acm.org/kanellakis
http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://isa-afp.org/entries/Binomial-Heaps.html
http://isa-afp.org/entries/Binomial-Heaps.html
http://isabelle.in.tum.de/doc/prog-prove.pdf
http://isabelle.in.tum.de/doc/prog-prove.pdf

268 References

53. T. Nipkow. Amortized complexity verified. In C. Urban and X. Zhang, edi-
tors, Interactive Theorem Proving (ITP 2015), volume 9236 of LNCS, pages
310–324. Springer, 2015.

54. T. Nipkow. Automatic functional correctness proofs for functional search trees.
In J. Blanchette and S. Merz, editors, Interactive Theorem Proving (ITP
2016), volume 9807 of LNCS, pages 307–322. Springer, 2016.

55. T. Nipkow and H. Brinkop. Amortized complexity verified. J. Autom. Reason-
ing, 62(3):367–391, 2019.

56. T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL. Springer,
2014. 298 pp. http://concrete-semantics.org.

57. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. http://www.
in.tum.de/~nipkow/LNCS2283/.

58. T. Nipkow and T. Sewell. Proof pearl: Braun trees. In J. Blanchette and
C. Hritcu, editors, Certified Programs and Proofs, CPP 2020, pages 18–31.
ACM, 2020.

59. T. Nipkow and D. Somogyi. Optimal binary search trees. Archive of Formal
Proofs, May 2018. https://isa-afp.org/entries/Optimal_BST.html, Formal
proof development.

60. Ocaml website. https://ocaml.org.
61. C. Okasaki. Three algorithms on Braun trees. J. Functional Programming,

7(6):661–666, 1997.
62. C. Okasaki. Purely Functional Data Structures. Cambridge University Press,

1998.
63. L. C. Paulson. The foundation of a generic theorem prover. Journal of Auto-

mated Reasoning, 5:363–397, 1989.
64. L. C. Paulson. ML for the Working Programmer. Cambridge University Press,

2nd edition, 1996.
65. S. Pettie. Towards a final analysis of pairing heaps. In 46th Annual IEEE Sym-

posium on Foundations of Computer Science (FOCS, pages 174–183. IEEE
Computer Society, 2005.

66. C. Reade. Balanced trees with removals: An exercise in rewriting and proof.
Sci. Comput. Program., 18(2):181–204, 1992.

67. M. Rem and W. Braun. A logarithmic implementation of flexible arrays. Mem-
orandum MR83/4. Eindhoven University of Techology, 1983.

68. S. Sahni. Leftist trees. In D. P. Mehta and S. Sahni, editors, Handbook of Data
Structures and Applications. Chapman and Hall/CRC, 2004.

69. B. Schoenmakers. A systematic analysis of splaying. Information Processing
Letters, 45:41–50, 1993.

70. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985.

71. D. D. Sleator and R. E. Tarjan. Self-adjusting heaps. SIAM J. Comput.,
15(1):52–69, 1986.

72. R. E. Tarjan. Amortized complexity. SIAM J. Alg. Disc. Meth., 6(2):306–318,
1985.

73. L. Théry. Formalising Huffman’s algorithm. Technical Report TRCS 034, De-
partment of Informatics, University of L’Aquila, 2004.

http://concrete-semantics.org
http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/
https://isa-afp.org/entries/Optimal_BST.html
https://ocaml.org

References 269

74. F. Turbak. CS230 Handouts — Spring 2007, 2007. http://cs.wellesley.edu/
~cs230/spring07/handouts.html.

75. J. Vuillemin. A data structure for manipulating priority queues. Commun.
ACM, 21(4):309–315, 1978.

76. M. Wenzel. Isabelle/Isar — A Versatile Environment for Human-Readable
Formal Proof Documents. PhD thesis, Institut für Informatik, Technische Uni-
versität München, 2002. http://nbn-resolving.de/urn/resolver.pl?urn:
nbn:de:bvb:91-diss2002020117092.

77. J. Williams. Algorithm 232 — Heapsort. Communications of the ACM,
7(6):347–348, 1964.

78. S. Wimmer, S. Hu, and T. Nipkow. Monadification, memoization and dynamic
programming. Archive of Formal Proofs, May 2018. https://isa-afp.org/
entries/Monad_Memo_DP.html, Formal proof development.

79. S. Wimmer, S. Hu, and T. Nipkow. Verified memoization and dynamic pro-
gramming. In J. Avigad and A. Mahboubi, editors, Interactive Theorem Prov-
ing (ITP 2018), volume 10895 of Lecture Notes in Computer Science, pages
579–596. Springer, 2018.

80. F. F. Yao. Efficient dynamic programming using quadrangle inequalities. In
STOC, pages 429–435. ACM, 1980.

81. B. Zhan. Efficient verification of imperative programs using auto2. In D. Beyer
and M. Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2018, volume 10805 of LNCS, pages 23–40.
Springer, 2018.

http://cs.wellesley.edu/~cs230/spring07/handouts.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092
https://isa-afp.org/entries/Monad_Memo_DP.html
https://isa-afp.org/entries/Monad_Memo_DP.html

Index

abstraction function, 61, 76
almost complete tree, 53
amortized running time, 210
augmented tree, 57
AVL tree, 101

balance factor, 108
balanced search trees, 81
binary search trees, 61
binary trie, 145
black height, 92
Braun tree, 122, 123

child, 49
coercion, 9
complete tree, 51
computation induction, 12

deletion by joining, 64
deletion by replacing, 64
depth, 49
difference lists, 30

Fibonacci tree, 107

head, 8
heap, 166
height-balanced tree, 108

IH, 12
inclusion, 9
interval tree, 69
invariant, 65, 76

preservation, 65

join approach, 114

leftist heap, 169
leftist tree, 169
level, 49
linear order, 19
linorder, 19
list extensionality, 127
locales, 76

Map, 78

observer functions, 211

pairing heap, 237
Patricia trie, 147
pivot, 22
Priority_Queue, 165
priority queue, 165

mergeable, 165
Priority_Queue_Merge, 166

Queue, 213
queue, 213

Hood-Melville, 215

right-heavy, 234
root, 49
running time, 12
running time function, 13

canonical, 14

272 Index

runs, 29

Set, 76
specification, 65
stable, 33

T , 13
tail, 8

time function, see running time
function

tree, 49
trie, 143
type class, 19
type of interest, 76
type variable, 8

unit, 9

	Basics
	Part I Sorting and Selection
	Sorting
	Selection

	Part II Search Trees
	Binary Trees
	Binary Search Trees
	Abstract Data Types
	2-3 Trees
	Red-Black Trees
	AVL Trees
	Beyond Insert and Delete: , and -
	Arrays via Braun Trees
	Tries
	Huffman's Algorithm

	Part III Priority Queues
	Priority Queues
	Leftist Heaps
	Priority Queues via Braun Trees
	Binomial Heaps

	Part IV Advanced Design and Analysis Techniques
	Dynamic Programming
	Amortized Analysis
	Queues
	Splay Trees
	Skew Heaps
	Pairing Heaps

	Part V Appendix
	List Library
	Time Functions
	Notation
	References
	Index

