Final Exam

Functional Data Structures

28. 7. 2020

Proof Guidelines: We expect valid Isabelle proof scripts to be submitted as a solution
to the questions of this exam. Major proof steps, especially inductions, need to be stated
explicitly. The use of ”sorry” may lead to the deduction of points but is preferable to
spending a lot of time on individual proof steps.

Please submit your solution via the submission system and ALSO via email to man-
sour@in.tum.de. You have to include your final answer to all questions in one email.
If you do not submit the exam by the deadline (10 minutes after the official end of
the exam) either via the submission system or via email you will have failed the exam
(X = no show = 5,0). The solutions you send by email are primarily intended as a
backup in case of technical problems. Unless you state explicitly that we should grade
the email submission (and it was submitted in time), we will grade the submission on
the submission system.

In the unlikely event that you discover a mistake in one of the questions you should
communicate this to nipkow@in.tum.de and mansour@in.tum.de. We will communicate
any corrections to the exam questions by email to you. Thus you do need to watch your
email at regular intervals.

Also, if you encounter unforeseen technical problems during the exam, you can send an
e-mail to nipkow@in.tum.de and mansour@in.tum.de.

1 Induction

1.1 Question 1

Consider the following definitions:

datatype t3 = Lf | Nd t3 t3 t3

fun sz 1 "t3 = nat” where
"sz Lf = 07|
"sz (Ndrst)=szr+szs+ szt + 17

fun lvs :: “t3 = nat” where
"lvs Lf = 17 |
"lus (Ndrst)=1lvsr + lvs s + lvs t”

There is a linear relationship between the size (sz) and the number of leaves (lvs) of a
tree. Find this relationship and prove lvs t = a * sz t + b for the correct a and b.
You have to use a structured Isar proof. The only two proof methods you are allowed to
use are induction and simp. Every call of simp must use exactly one named fact or fact
collection. Permitted are the definitions sz.simps and [vs.simps, the induction hypothe-
ses, or algebra_simps, and this is an exclusive or. For instance, simp only: lvs.simps is a
valid proof method, but simp add: lvs.simps is not for this question.

abbreviation ¢ where
abbreviation b where

lemma “lvst = a * szt + b”

2 Trees with Same Structure

2.1 Question 1

The following is the data type that describes a binary tree:

datatype ‘a tree = Leaf | Node ”'a tree” 'a 7'a tree”
Define a recursive function
fun same :: ”'a tree = 'b tree = bool” where

that returns true if and only if the two binary trees have the same structure (i.e. ignoring
values).

2.2 Question 2

The following is the definition of a function that inserts an element into a Braun heap
that is based on the binary trees described above:

fun insert_pq :: ”'a::linorder = 'a tree = 'a tree” where
"insert_pq a Leaf = Node Leaf a Leaf” |
"insert_pq a (Node l z r) =
(if a < x then Node (insert_pq x r) a l else Node (insert-pq a r) z 1)”

Show that insertion of arbitrary elements into two Braun heaps with the same structure
yields heaps with the same structure again.

lemma same_insert: “same t t' => same (insert_pq x t) (insert_pq y t’)”

3 2-3-4 Trees

2-3-4 trees are trees where nodes can either have 2, 3, or 4 children. The following data
type encodes 2-3-4 trees.

datatype 'a tree23) =
Leaf |
Node2 7'a tree23)” 'a 7'a tree23}” |
Node3 7'a tree234” 'a 7'a tree234” 'a 7'a tree234” |
Noded 7'a tree234” 'a ”'a tree234” 'a 7'a tree234” 'a ”'a tree234”

~

~

To realise logarithmic access and update running times, the tree has to maintain a certain
completeness invariant, as well as an ordering invariant on the data stored in the tree.
Both invariants are defined as follows:

fun complete :: ”'a tree234 = bool” where
“complete Leaf = True” |
“complete (Node2 1 _ r) = (complete | & complete r & height | = height)" |
“complete (Node3 1 _m _r) =

(complete | & complete m & complete r & height | = height m & height m = height r)” |
“complete (Node4 1 - ml _m2 _r) =

(complete | & complete m1 & complete m2 & complete r & height | = height m1 & height m1
= height m2 & height m2 = height r)”

fun ordered :: 7'a::linorder tree23/ = bool” where

7ordered Leaf <— True” |

7ordered (Node2 t1 v t2) +—

ordered t1 N ordered t2 N (Vz€set_tree234 t1. (<) xz v) A (Vz€set_tree234 t2. (<) vz)” |
“ordered (Node3 t1 vl t2 v2 t3) <—

ordered t1 A ordered t2 A ordered t3 A vl < v2

A (Yxesettree234 t1. (<) z vl) N\ (Vaz€set_tree234 t2. (<) vl z)

A (Y zeset_tree234 t2. (<) z v2) N (Vreset_tree234 t8. (<) v2z)” |
Yordered (Nodej t1 vl t2 v2 t3 v3 t4) «—

ordered t1 A ordered t2 N ordered t3 A ordered t4 N vl < v2 A v2 < v8
N (Yzeset_tree234 t1. (<) xz vl) N (Y xEset_tree234 t2. (<) vl)

N (Vzeset_tree234 t2. (<) x v2) N (VxEset_tree234 t3. (<) v2)

A (Vzeset_tree234 t3. (<) z v8) N (Vreset_tree234 t4. (<) v3z)”

In the functions above, the function height returns the height of a 2-3-4 tree.

In this section you are required to define functions that perform set operations using
2-3-4 trees. Your functions have to traverse the tree at most once but may use function
height as much as they please. You can use an operation you define in the answer to
one part as an auxiliary function to define an operation required in another part.

Note: you are not required to prove properties about those functions.

3.1 Part 1

Define a function join that, given two ordered 2-3-4 trees and a root, computes an
ordered 2-3-4 tree containing the given root and the elements of the two given trees.

fun join::"’a tree234 = 'a = 'a tree23/ = 'a tree23/” where

The function join has to preserve the members in the given trees as well as their relative
ordering, and the output tree has to conform to the completeness invariant. Formally,
join has to conform to the following properties:

lemma join_complete: “complete | = complete r => complete (join l x 1)”

lemma set_join: "set_tree234 (join lx r) = set_tree234 1 U {z} U set_tree234 r”

lemma ordered_join: ”[ordered I; ordered r; ¥ x€set_tree234 l. x < a; V xEset_tree234 r. a < x]
= ordered (joinlar)”

3.2 Part 2

Define a function that inserts an element in a given 2-3-4 tree. The function has to
insert the element such that the resulting tree is ordered, complete, and contains all the
elements in the given tree. You have to use the function join that you defined in the
last exercise.

definition insert :: 7’a::linorder = 'a tree23} = 'a tree23/” where

Formally, the function has to conform to the following properties:

lemma set_tree_insert: “ordered t = set_tree234 (insert x t) = Set.insert x (set_tree234 t)”
lemma ordered_insert: “ordered t = ordered (insert z t)”
lemma inv_insert: “complete t => complete (insert x t)”

4 Amortized Complexity

Consider a new kind of stack that consists of two stacks that are swapped with each
push and pop. Moreover, the pop is a multi-pop, where any number of elements can be
popped:

type_synonym ’a stk = ”’a list * 'a list”

fun push :: ”'a = 'a stk = 'a stk” where
"push x (xs,ys) = (ys,x#xs)”

fun pop :: "nat = 'a stk = 'a stk” where
"pop n (xs,ys) = (ys, drop n zs)”

Assume

fun t_push :: ”'a = 'a stk = nat” where
“t_push x s = 1”7

fun t_pop :: "nat = 'a stk = nat” where
"t_pop n (xs,ys) = min n (length xs)”

Use the potential method to show that the amortized complexity of both push and pop
is constant. Find the exact constants, not just upper bounds. You are required to
state all the definitions and theorem statements yourself. Please use comments and/or
meaningful names to clarify what your definitions and theorem statements stand for.

	Induction
	Question 1

	Trees with Same Structure
	Question 1
	Question 2

	2-3-4 Trees
	Part 1
	Part 2

	Amortized Complexity

