
Technische Universität München SS 2022
Institut für Informatik 6. 5. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 2

Exercise 2.1 Fold function

In the last homework, you implemented a fold function yourself. Now have a look at
Isabelle/HOL’s standard function fold.
thm fold.simps

Define a function to sum up a list once recursive and once using fold, and show that
both are equal.
fun listsum :: “nat list ⇒ nat”
definition listsum ′ :: “nat list ⇒ nat”
lemma “listsum xs = listsum ′ xs”

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.
datatype ′a ltree =

Define a function that returns the list of elements resulting from an in-order traversal of
the tree.
fun inorder :: “ ′a ltree ⇒ ′a list”

In order to fold over the elements of a tree, we could use fold f (inorder t) s.

Define a function fold_ltree that is recursive on the structure of the tree, and that returns
the same result as fold f (inorder t) s.
fun fold_ltree :: “( ′a ⇒ ′s ⇒ ′s) ⇒ ′a ltree ⇒ ′s ⇒ ′s”
lemma “fold f (inorder t) s = fold_ltree f t s”

Define a function mirror that reverses the order of the leafs, i.e. that satisfies the
following specification:
lemma “inorder (mirror t) = rev (inorder t)”

1



Exercise 2.3 Shuffle Product

A shuffle of two lists, xs and ys, is a list that contains exactly the elements of xs and ys
s.t. every two elements x ∈ xs (resp. ys) and x ′ ∈ xs (resp. ys) occur in the shuffle in
the same order they do in xs (resp. ys).
Define a function shuffles that returns a list of all shuffles of two given lists
fun shuffles :: “ ′a list ⇒ ′a list ⇒ ′a list list”

Show that the length of any shuffle of two lists is the sum of the length of the original
lists.
lemma “zs ∈ set (shuffles xs ys) =⇒ length zs = length xs + length ys”

Homework 2.1 Tail-recursive replace

Submission until Thursday, May 12, 23:59pm.

We want to define a tail-recursive function that replaces all elements a with b in a list.
First, specify a non tail-recursive version, and prove it correct (this should not be diffi-
cult):
fun replace :: “ ′a ⇒ ′a ⇒ ′a list ⇒ ′a list”
lemma replace_len: “length (replace a b xs) = length xs”

lemma replace_set: “a 6= b =⇒ a /∈ set (replace a b xs)”

lemma replace_set2: “b ∈ set xs =⇒ b ∈ set (replace a b xs)”

For the tail-recursive version, the recursive call must be the outermost function. We use
an additional accumulator parameter which stores the list reversed, and reverse in the
end.
Complete the definition and show it correct.
fun replace_tr :: “ ′a ⇒ ′a ⇒ ′a list ⇒ ′a list ⇒ ′a list” where

“replace_tr _ _ acc [] = rev acc”
lemma replace_tr_len: “length (replace_tr a b [] xs) = length xs”

lemma replace_tr_set: “a 6= b =⇒ a /∈ set (replace_tr a b [] xs)”

lemma replace_tr_set2: “b ∈ set xs =⇒ b ∈ set (replace_tr a b [] xs)”

Hint: Start by generalizing the lemmas first. If auto loops on a goal involving set, try
clarsimp instead.

2



Homework 2.2 Converting Trees

Submission until Thursday, May 12, 23:59pm.

Define a function to convert trees from the library to the ltree type from the tutorial.
Note that while the constructors from the library trees have the same names (Leaf and
Node), we can use the 〈...〉 syntax to disambiguate.
fun to_tree :: “ ′a tree ⇒ ′a ltree”

You do not need to specify an equation for 〈〉, but for all other trees, the in-order traversal
should be kept:
lemma to_tree_inorder : “t 6= 〈〉 =⇒ Tree.inorder t = inorder (to_tree t)”

Prove that lemma!
Hint: use nitpick to check for problems in your definition first.

3


