Functional Data Structures

Exercise Sheet 2

Exercise 2.1 Fold function

In the last homework, you implemented a fold function yourself. Now have a look at Isabelle/HOL's standard function fold.
thm fold.simps
Define a function to sum up a list once recursive and once using fold, and show that both are equal.
fun listsum :: "nat list \Rightarrow nat"
definition listsum' :: "nat list \Rightarrow nat"
lemma" "listsum xs $=$ listsum' $x s$ "

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.

```
datatype 'a ltree =
```

Define a function that returns the list of elements resulting from an in-order traversal of the tree.

```
fun inorder ::"'a ltree => 'a list"
```

In order to fold over the elements of a tree, we could use fold f (inorder $t) s$.
Define a function fold_l ltree that is recursive on the structure of the tree, and that returns the same result as fold f (inorder t) s.
fun fold_ltree :: "(' $\left.a \neq{ }^{\prime} s \Rightarrow{ }^{\prime} s\right) \Rightarrow^{\prime}$ 'a ltree $\Rightarrow{ }^{\prime} s \Rightarrow{ }^{\prime} s$ "
lemma" "fold $f($ inorder $t) s=$ fold_ltree $f t s "$

Define a function mirror that reverses the order of the leafs, i.e. that satisfies the following specification:
lemma "inorder $($ mirror $t)=\operatorname{rev}($ inorder $t) "$

Exercise 2.3 Shuffle Product

A shuffle of two lists, $x s$ and $y s$, is a list that contains exactly the elements of $x s$ and $y s$ s.t. every two elements $x \in x s$ (resp. ys) and $x^{\prime} \in x s$ (resp. ys) occur in the shuffle in the same order they do in $x s$ (resp. ys).
Define a function shuffles that returns a list of all shuffles of two given lists
fun shuffles :: " a list \Rightarrow 'a list \Rightarrow 'a list list"
Show that the length of any shuffle of two lists is the sum of the length of the original lists.

```
lemma" "zs set (shuffles xs ys)\Longrightarrow length zs = length xs + length ys"
```


Homework 2.1 Tail-recursive replace

Submission until Thursday, May 12, 23:59pm.
We want to define a tail-recursive function that replaces all elements a with b in a list. First, specify a non tail-recursive version, and prove it correct (this should not be difficult):
fun replace :: " $a \Rightarrow$ ' $a \Rightarrow$ 'a list \Rightarrow 'a list"
lemma replace_len: "length (replace a bxs) = length xs"
lemma replace_set: " $a \neq b \Longrightarrow a \notin$ set (replace a bls)"
lemma replace_set2: " $b \in$ set $x s \Longrightarrow b \in$ set (replace a brs)"

For the tail-recursive version, the recursive call must be the outermost function. We use an additional accumulator parameter which stores the list reversed, and reverse in the end.
Complete the definition and show it correct.

```
fun replace tr :: "' \(a \Rightarrow\) ' \(a \Rightarrow\) ' \(a\) list \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list" where
    "replace_tr__ acc [] = rev acc"
lemma replace_tr_len: "length (replace_tr ab[]xs)=length xs"
lemma replace_tr_set: " \(a \neq b \Longrightarrow a \notin\) set (replace_tr a \(b[] x s\) )"
lemma replace_tr_set2: " \(b \in\) set \(x s \Longrightarrow b \in \operatorname{set}\left(r e p l a c e \_t r a b[] x s\right) "\)
```

Hint: Start by generalizing the lemmas first. If auto loops on a goal involving set, try clarsimp instead.

Homework 2.2 Converting Trees

Submission until Thursday, May 12, 23:59pm.
Define a function to convert trees from the library to the ltree type from the tutorial.
Note that while the constructors from the library trees have the same names (Leaf and Node), we can use the $\langle\ldots\rangle$ syntax to disambiguate.
fun to_tree :: "'a tree \Rightarrow ' a ltree"
You do not need to specify an equation for \rangle, but for all other trees, the in-order traversal should be kept:
lemma to_tree_inorder: " $t \neq\langle \rangle \Longrightarrow$ Tree.inorder $t=$ inorder (to_tree t)"

Prove that lemma!
Hint: use nitpick to check for problems in your definition first.

