
Technische Universität München SS 2022
Institut für Informatik 13. 5. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 3

Exercise 3.1 Membership Test with Less Comparisons

In the worst case, the isin function performs two comparisons per node. In this exercise,
we want to reduce this to one comparison per node. The idea is that we never test for
>, but always goes right if not <. However, one remembers the value where one should
have tested for =, and performs the comparison when a leaf is reached.
fun isin2 :: “(′a::linorder) tree ⇒ ′a option ⇒ ′a ⇒ bool”

— The second parameter stores the value for the deferred comparison

Show that your function is correct.
Hint: Auxiliary lemma for isin2 t (Some y) x !
lemma isin2_None:

“bst t =⇒ isin2 t None x = isin t x”

Exercise 3.2 Height-Preserving In-Order Join

Write a function that joins two binary trees such that

• The in-order traversal of the new tree is the concatenation of the in-order traversals
of the original trees

• The new tree is at most one higher than the highest original tree
Hint: Once you got the function right, proofs are easy!

fun join :: “ ′a tree ⇒ ′a tree ⇒ ′a tree”

lemma join_inorder [simp]: “inorder(join t1 t2) = inorder t1 @ inorder t2”

lemma “height(join t1 t2) ≤ max (height t1) (height t2) + 1”

1

Exercise 3.3 Implement Delete

Implement delete using the join function from last exercise.

Note: At this point, we are not interested in the implementation details of join any more,
but just in its properties, i.e. what it does to trees. Thus, as first step, we declare its
equations to not being automatically unfolded.
declare join.simps[simp del]

Both set_tree and bst can be expressed by the inorder traversal over trees:
thm set_inorder [symmetric] bst_iff_sorted_wrt_less

Note that set_inorder is declared as simp. Be careful not to have both directions of the
lemma in the simpset at the same time, otherwise the simplifier is likely to loop.
You can use simp del: set_inorder add: set_inorder [symmetric] to temporarily remove
the first direction of the lemma from the simpset.
Alternatively, you can write declare set_inorder [simp del] to remove it once and forall.

For bst, you might want to delete the bst_wrt simps, and use the append lemma:
thm bst_wrt.simps
thm sorted_wrt_append

Show that join preserves the set of entries
lemma join_set[simp]: “set_tree (join t1 t2) = set_tree t1 ∪ set_tree t2”

Show that joining the left and right child of a BST is again a BST:
lemma bst_pres[simp]: “bst (Node l (x::_::linorder) r) =⇒ bst (join l r)”

Implement a delete function using the idea contained in the lemmas above.
fun delete :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree”

Prove it correct! Note: You’ll need the first lemma to prove the second one!
lemma bst_set_delete[simp]: “bst t =⇒ set_tree (delete x t) = (set_tree t) − {x}”

lemma bst_del_pres: “bst t =⇒ bst (delete x t)”

Homework 3.1 Tree Addressing

Submission until Thursday, May 19, 23:59pm.
A position in a tree can be given as a list of navigation instructions from the root, i.e.
whether to go to the left or right subtree. We call such a list a path.

2

datatype direction = L | R
type_synonym path = “direction list”

Define when a path is valid:
fun valid :: “ ′a tree ⇒ path ⇒ bool”

Define a function delete_substree t p”, that returns ”t”, with the subtree at ”p” replaced
with a leaf.
fun delete_subtree :: “ ′a tree ⇒ path ⇒ ′a tree”

Define the function such that nothing happens if an invalid path is given. Prove the
following for delete_subtree:
lemma delete_subtree_invalid: “¬valid t p =⇒ delete_subtree t p = t”

Similarly define two functions, the first ”get t p” to return the subtree of ”t” addressed
by a given path, and a second one ”put t p s”, that returns t, with the subtree at p
replaced by s. The function ”get” should return ”undefined” if the path is not valid and
”put” should do nothing if the path is not valid.
fun get :: “ ′a tree ⇒ path ⇒ ′a tree”
fun put :: “ ′a tree ⇒ path ⇒ ′a tree ⇒ ′a tree”

Prove the following algebraic laws on ”delete”, ”put”, and ”get”.
lemma put_in_delete: “put (delete_subtree t p) p (get t p) = t”

lemma delete_delete: “valid t p =⇒ delete_subtree (delete_subtree t p) p = delete_subtree t p”

lemma delete_replaces_with_leaf [simp]: “valid t p =⇒ get (delete_subtree t p) p = Leaf”

lemma valid_delete: “valid t p =⇒ valid (delete_subtree t p) p”

Show the following lemmas about appending two paths:
lemma valid_append: “valid t (p@q) ←→ valid t p ∧ valid (get t p) q”

lemma put_delete_get_append:
“valid t (p@q) =⇒ delete_subtree t (p@q) = put t p (delete_subtree (get t p) q) ”

lemma put_get_append:
“valid t (p@q) =⇒ get (put t (p@q) s) p = put (get t p) q s”

Homework 3.2 Implementing a map using binary trees

Submission until Thursday, May 19, 23:59pm.

3

A map is a collection of (key, value) pairs, where each possible key appears at most once.
For this datatype, one should be able add/update a (key,value) pair, delete a pair, and
lookup a value associated with a particular key.
A straightforward implementation of maps can be done using association lists. An exist-
ing such implementation uses the functions upd_list, del_list, and AList_Upd_Del.map_of
for add/update a (key,value) pair, deleting a pair, and looking up values, respectively.
thm map_of .simps upd_list.simps del_list.simps

HINT: to prove facts concerning del_list, upd_list, or AList_Upd_Del.map_of you
might find it useful to use del_list_simps, upd_list_simps, or map_of_simps as simp
rules. Each one of those is a set of lemmas proven about the respective functions.
thm del_list_simps
thm upd_list_simps
thm map_of_simps

For linearly ordered keys, it is more efficient to implement maps using binary trees.
Using binary search trees, implement the three main map functionalities add/update a
(key,value) pair, deleting a pair, and looking up values. Then you should prove their
equivalence to the corresponding association list implementation of maps.
The first one of those functionalities is map lookup. It should return an option type, i.e.
for a key k it should return Some v if the map has an entry for k, and None otherwise.
fun map_lookup :: “(′a::linorder∗ ′b) tree ⇒ ′a ⇒ ′b option”

Prove it is equivalent to AList_Upd_Del.map_of, if the tree is well-formed (i.e an inorder
traversal of its elements returns a sorted list).

HINT: for proving facts about objects of type option, it is useful to use option.split as a
split rule for ”auto” (check the usage of ”split: tree.split” in the exercise).
lemma lookup_map_of :

“sorted1(inorder t) =⇒ map_lookup t x = map_of (inorder t) x”

The second functionality is map update.
fun map_update :: “ ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree”

Prove it is equivalent to upd_list.
lemma inorder_update:

“sorted1(inorder t) =⇒ inorder(map_update a b t) = upd_list a b (inorder t)”

Lastly, define a function that, given a key k, deletes key-value pair (k, v) from a map
represented as a tree, if (k, v).
HINT: You can use the function split_min defined in the lecture demonstration of trees.
fun map_delete :: “ ′a::linorder ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree”

Prove that it works as intended.
HINT: you will need to prove a lemma about split_min.

4

lemma inorder_delete:
“sorted1(inorder t) =⇒ inorder(map_delete x t) = del_list x (inorder t)”

5

