
Technische Universität München SS 2022
Institut für Informatik 8. 7. 2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 10

Exercise 10.1 Tries with 2-3-trees

In the lecture, tries stored child nodes with an abstract map. We want to refine the trie
data structure to use 2-3-trees for the map. Note: To make the provided interface more
usable, we introduce some abbreviations here:
abbreviation “empty23 ≡ Leaf”
abbreviation “inv23 t ≡ complete t ∧ sorted1 (inorder t)”

The refined trie datatype
datatype ′a trie ′ = Nd ′ bool “(′a× ′a trie ′) tree23”

Define an invariant for trie’ and an abstraction function to trie. Based on the original
tries, define membership, insertion, and deletion, and show that they behave correctly
wrt. the abstract trie. Finally, combine the correctness lemmas to get a set interface
based on 2-3-tree tries.
You will need a lemma like the following for termination:
lemma lookup_size_aux[termination_simp]:

“lookup m k = Some v =⇒ size (v:: ′a trie ′) < Suc (size_tree23 (λx. Suc (size (snd x))) m)”

fun trie ′_inv :: “ ′a::linorder trie ′ ⇒ bool”
fun trie ′_α :: “ ′a::linorder trie ′ ⇒ ′a trie”
definition empty ′ :: “ ′a trie ′” where
[simp]: “empty ′ = Nd ′ False empty23”

fun isin ′ :: “ ′a::linorder trie ′ ⇒ ′a list ⇒ bool”
fun insert ′ :: “ ′a::linorder list ⇒ ′a trie ′ ⇒ ′a trie ′”
fun delete ′ :: “ ′a::linorder list ⇒ ′a trie ′ ⇒ ′a trie ′”
definition set ′ :: “ ′a::linorder trie ′ ⇒ ′a list set” where
[simp]: “set ′ t = set (trie ′_α t)”

lemmas map23_thms[simp] = M .map_empty Tree23_Map.M .map_update Tree23_Map.M .map_delete
Tree23_Map.M .invar_empty Tree23_Map.M .invar_update Tree23_Map.M .invar_delete
M .invar_def M .inorder_update M .inorder_inv_update sorted_upd_list

interpretation S ′: Set
where empty = empty ′ and isin = isin ′ and insert = insert ′ and delete = delete ′

and set = set ′ and invar = trie ′_inv

1

Exercise 10.2 Bootstrapping a Priority Queue

Given a generic priority queue implementation with O(1) empty, is_empty operations,
O(f 1 n) insert, and O(f 2 n) get_min and del_min operations.
Derive an implementation with O(1) get_min, and the asymptotic complexities of the
other operations unchanged!
Hint: Store the current minimal element! As you know nothing about f 1 and f 2, you
must not use get_min/del_min in your new insert operation, and vice versa!

For technical reasons, you have to define the new implementations type outside the
locale!
datatype (′a, ′s) bs_pq =

locale Bs_Priority_Queue =
orig: Priority_Queue where

empty = orig_empty and
is_empty = orig_is_empty and
insert = orig_insert and
get_min = orig_get_min and
del_min = orig_del_min and
invar = orig_invar and
mset = orig_mset

for orig_empty orig_is_empty orig_insert orig_get_min orig_del_min orig_invar
and orig_mset :: “ ′s ⇒ ′a::linorder multiset”

begin

In here, the original implementation is available with the prefix orig, e.g.
term orig_empty term orig_invar
thm orig.invar_empty

definition empty :: “(′a, ′s) bs_pq”
fun is_empty :: “(′a, ′s) bs_pq ⇒ bool”
fun insert :: “ ′a ⇒ (′a, ′s) bs_pq ⇒ (′a, ′s) bs_pq”
fun get_min :: “(′a, ′s) bs_pq ⇒ ′a”
fun del_min :: “(′a, ′s) bs_pq ⇒ (′a, ′s) bs_pq”
fun invar :: “(′a, ′s) bs_pq ⇒ bool”
fun mset :: “(′a, ′s) bs_pq ⇒ ′a multiset”
lemmas [simp] = orig.is_empty orig.mset_get_min orig.mset_del_min

orig.mset_insert orig.mset_empty
orig.invar_empty orig.invar_insert orig.invar_del_min

Show that your new implementation satisfies the priority queue interface!
sublocale Priority_Queue

where empty = empty
and is_empty = is_empty
and insert = insert
and get_min = get_min
and del_min = del_min

2

and invar = invar
and mset = mset
apply unfold_locales

proof goal_cases

Homework 10.1 Constructing an lheap from a List of Elements

Submission until Thursday, 14. 7. 2022, 23:59pm.
The naive solution of starting with the empty heap and inserting the elements one by
one can be improved by repeatedly merging heaps of roughly equal size. Start by turning
the list of elements into a list of singleton heaps. Now make repeated passes over the
list, merging adjacent pairs of heaps in each pass (thus halving the list length) until only
a single heap is left. It can be shown that this takes linear time.
Define a function heap_of_list :: ′a list ⇒ ′a lheap and prove its functional correctness.

Start with a function to merge pairs of adjacent heaps, and show that it halves the
length:
fun merge_adjacent :: “ ′a::ord lheap list ⇒ ′a lheap list”
lemma length_merge_adjacent[simp]: “length (merge_adjacent ts) = (length ts + 1) div 2”

Then define a function to merge a list of lheaps, and use it for the final definition:
fun merge_forest :: “ ′a::ord lheap list ⇒ ′a lheap”
definition heap_of_list :: “ ′a::ord list ⇒ ′a lheap”
lemma mset_heap_of_list: “mset_tree (heap_of_list xs) = mset xs”
lemma heap_heap_of_list: “heap (heap_of_list xs)”
lemma ltree_ltree_of_list: “ltree (heap_of_list xs)”

Homework 10.2 Be Original!

Submission until Thursday, 21. 7. 2022, 23:59pm.
Develop a nice Isabelle formalisation yourself!

• This homework goes in parallel this week and exclusively next week. You should
choose your topic until next week, and have some key concepts formalized.

• The homework will yield 15 points (for minimal solutions). Additionally, up to 10
bonus points may be awarded for particularly nice/original/etc solutions.

• You may develop a formalisation from all areas, not only functional data structures.
• Document your solution well, such that it is clear what you have formalised and

what your main theorems state!
• Set yourself a time frame and some intermediate/minimal goals. Your formalisation

needs not be universal and complete.

3

• You are encouraged to discuss the realisability of your project with us!
• If you can’t think of a topic on your own, here are a few suggestions (though

they will score lower on creativity): 1-2 trees (deletion, height), sparse matrices,
skew binary numbers, arbitrary precision arithmetic (on lists of bits), interval lists
(extension to those of the tutorial), spatial data structures (quad-trees, oct-trees),
Fibonacci heaps, etc.

• Use the submission system to submit your (temporary) result as a single Isabelle
theory. This submission does not need to (and in fact, won’t be able to) get the
status ”passed”.

4

