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@ Correctness



sorted :: ('a::linorder) list = bool

sorted [| = True
sorted (x # ys) = (VY yeset ys. x < y) A sorted ys)



Correctness of sorting

Specification of sort :: (‘a::linorder) list = 'a list:
sorted (sort xs)
Is that it? How about
set (sort zs) = set xs

Better: every x occurs as often in sort xs as in xs.

More succinctly:
mset (sort xs) = mset s

where mset :: 'a list = 'a multiset



What are multisets?

Sets with (possibly) repeated elements

Some operations:
{#} = 'a multiset

add_mset = 'a = 'a multiset = 'a multiset
+ v a multiset = 'a multiset = 'a multiset
mset = 'a list = 'a multiset
set_mset 1 'a multiset = 'a set

Import HOL— Library. Multiset



@ Insertion Sort



HOL/Data_Structures/Sorting.thy

Insertion Sort Correctness
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© Time

11



Principle: Count function calls

For every function fom=..=>1,=>71
define a timing function T}y :: 71 = ... = T, = nat:

Translation of defining equations:
Elfpr ... pn=1¢€ = (Trp1 ... po="T[e] +1)

Translation of expressions:
Tloge ... e] = Tlea]l + ... +Tle] + Tyer .. e

All other operations (variable access, constants,
constructors, primitive operations on bool and numbers)
cost 1 time unit
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Example: @

[z # (25 @ ys)] + 1)

(

(
El (x# xs) Q ys =z # (s Q ys) |
— _T
= ( = Ta xs ys + 5)

~

[zs Q@ ys] + Ty x (zs Q ys)
(TTzs) + Tlys] + Ta zs ys) + 1
(1+14 Tazsys) +1



if and case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.

T [if b then ¢ else es]
= Tb] + (if b then T[ei] else T[e,])

Tlcase eof p1 = e | ... | pr = ei]
= Tle] + (case eof py = Tler] | ... | pr = Tlex])

Also special: let z = t; in
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O(.) is enough

—> Reduce all additive constants to 1
Example

Ta (x # xs) ys = Ta x5 ys + 5 ~
Ta (x # zs) ys = Ta xs ys + 1

This means we count only
e the defined functions via T} and
e 11 for the function call itself.

All other operations (variables etc) cost 0, not 1.
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Discussion

® The definition of T} from fcan be automated.

® The correctness of T} could be proved w.r.t.
a semantics that counts computation steps.

® Precise complexity bounds (as opposed to O(.))
would require a formal model of (at least) the
compiler and the hardware.
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HOL/Data_Structures/Sorting.thy

Insertion sort complexity
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@ Merge Sort
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O Merge Sort
Top-Down
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merge :: 'a list = 'a list = 'a list
merge || ys = ys

merge s || = s

merge (z # xs) (y # ys) =

(if z < y then x # merge xs (y # ys)
else y # merge (x # xs) ys)

msort :: 'a list = 'a list
msort s =
(let n = length xs
in if n <1 then zs
else merge (msort (take (n div 2) zs))
(msort (drop (n div 2) xs)))
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Number of comparisons

C_merge :: 'a list = 'a list = nat
C_msort :: 'a list = nat

Lemma
C_merge s ys

Theorem
length xs = 28 = C_msort xs < k * 2F
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HOL/Data_Structures/Sorting.thy

Merge Sort
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O Merge Sort

Bottom-Up
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msort_bu :: 'a list = 'a list

msort_bu xs = merge_all (map (Az. [z]) xs)

merge_all :: 'a list list = 'a list

merge_all [| = |]
merge_all [zs] = xs
merge_all zss = merge_all (merge_adj xss)

merge_adj :: 'a list list = 'a list list
merge-ad; || = [
merge_adj [zs] = |xs]

merge_adj (xs # ys # zss) =
merge xs ys # merge_adj z8s
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Number of comparisons

C_merge_adj :: 'a list list = nat
C_merge_all :: 'a list list = nat
C_msort_bu :: 'a list = nat

Theorem
length zs = 2F = C_msort_bu zs < k * 2V
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HOL/Data_Structures/Sorting.thy

Bottom-Up Merge Sort
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Even better

Make use of already sorted subsequences

Example
Sorting [7, 3, 1, 2, 5]
do not start with [[7], [3], [1], [2]
1,

, [5]]
but with [[1, 3, 7], [2, 5]]
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Archive of Formal Proofs

https://www.isa-afp.org/entries/
Efficient-Mergesort.shtml
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Chapter 7

Binary Trees



@ Binary Trees

@ Basic Functions

@ (Almost) Complete Trees
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@ Binary Trees

31



HOL/Library/Tree.thy
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Binary trees

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

9

Abbreviations: Leaf
(l, a, 1)

Node |l a r

Most of the time: tree = binary tree
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@ Basic Functions
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Tree traversal

inorder :: 'a tree = 'a list

inorder () = |]
inorder (I, x, r) = inorder | Q [2] @ dnorder r

preorder :: 'a tree = 'a list

preorder () = ||
preorder (I, x, 1) = x # preorder | Q preorder r

postorder :: 'a tree = 'a list

postorder () = ||
postorder (I, x, ) = postorder | Q postorder r Q [z
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size ;1 'a tree = nat

(Ol =0
(Ll =11+ 1 +1

sizel :: 'a tree = nat

[l =1

({4~ ol = [l + I
Lemma [t = |t| + 1

Warning: |.| and |.|; only on slides

Size
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Height

height :: 'a tree = nat

h(()) =0
h((l, - 1)) = maz (h(D) (h(r)) + 1

Warning: h(.) only on slides
Lemma A(t) < [

Lemma |#; < 2/
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Minimal height

man_height :: 'a tree = nat

mh(()) = 0
mh({l, _, 7)) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides
Lemma mh(t) < h(t)

Lemma 29 < |4
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@ (Almost) Complete Trees
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Complete tree

complete :: 'a tree = bool

complete () = True

complete (I, _, r) =

(h(l) = h(r) A complete I N complete 1)

Lemma complete t = (mh(t) = h(t))
Lemma complete t = |t|; = 2"

Lemma — complete t = |t|; < 9h(?)
Lemma — complete t = omh(t) |t|1

Corollary ||, = 2"Y — complete t
Corollary |t|; = 2" — complete t
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Almost complete tree

acomplete :: 'a tree = bool
acomplete t = (h(t) — mh(t) < 1)

Almost complete trees have optimal height:
Lemma If acomplete t and |t| < |t then h(t) < h(t)).
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Warning

® The terms complete and almost complete
are not defined uniquely in the literature.

® For example,
Knuth calls complete what we call almost complete.
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Chapter 8

Search Trees



® Unbalanced BST

© Abstract Data Types

@ 2-3 Trees

@® Red-Black Trees

@® More Search Trees

@® Union, Intersection, Difference on BSTs

@ Tries and Patricia Tries
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Most of the material focuses on
BSTs = binary search trees
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BSTs represent sets

Any tree represents a set:

set_tree :: 'a tree = 'a set
set_tree () = {}
set_tree (I, z, r) = set_tree | U {z} U set_tree r

A BST represents a set that can be searched in time

O(h(1))

Function set_tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object

46



bst

bst :: 'a tree = bool

bst () = True

bst (I, a, 1) =

((Vzeset_tree . x < a) A

(Vzeset_tree r. a < x) A bst I A\ bst 1)

Type ‘a must be in class linorder ('a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder

47



Set interface

An implementation of sets of elements of type 'a must

provide
e An implementation type s
e empty :: s
e insert:: 'a = 's = 's

delete :: 'a = 's = s
isin . 's = 'a = bool
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Map interface

Instead of a set, a search tree can also implement a map
from 'a to 'b:

e An implementation type 'm

e empty :: 'm

e update :: 'a = 'b = 'm = 'm
delete :: 'a = 'm = 'm
lookup :: 'm = 'a = 'b option

Sets are a special case of maps
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Comparison of elements

We assume that the element type 'a is a linear order
Instead of using < and < directly:
datatype cmp_val = LT | EQ | GT

cmp Ty =
(if z < y then LT else if z = y then EQ else GT)

50



® Unbalanced BST

51



® Unbalanced BST

Implementation
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Implementation type: ‘a tree
empty = Leaf

insert x (; = ((), 7, ())

insert x (I, a, r) = (case cmp x a of
LT = (insert x I, a, 1)
| EQ = (I, a, )
| GT = (I, a, insert x 1))
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isin () v = False
isin (I, a, ) © = (case cmp = a of
LT = isin lx
| EQ = True
| GT = isin r )
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delete z () = ()
delete x (I, a, ) =
(case cmp x a of
LT = (delete z 1, a, 1)
| EQ = if r= () then [
else let (a’, r') = split-min rin (I, o/, 1)
| GT = (I, a, delete x 1))

split-min (1, a, 1) =
(if I = () then (a, r)
else let (z, I") = split-min lin (z, (I', a, 1)))

55



® Unbalanced BST

Correctness

56



Why is this implementation
correct?

Because empty insert delete isin

simulate  {} U{} —{} €

set_tree empty = {}

set_tree (insert x t) = set_tree t U {x}
set_tree (delete x t) = set_tree t — {z}
isin t ¢ = (z € set_tree t)

Under the assumption bst ¢
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Also: bst must be invariant

bst empty
bst t = bst (insert x t)
bst t = bst (delete x t)
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® Unbalanced BST

Correctness Proof Method Based on Sorted Lists
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Key idea

Local definition:

—

sorted means sorted w.r.t. <

No duplicates!

bst t can be expressed as sorted(inorder t)

Conduct proofs on sorted lists, not sets
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Two kinds of invariants

e Unbalanced trees only need the invariant bst

o More efficient search trees come with additional
structural invariants = balance criteria.
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Correctness via sorted lists

Correctness proofs of (almost) all search trees
covered in this course
can be automated.

Except for the structural invariants.

Therefore we concentrate on the latter.

For details see file See HOL/Data Structures/Set_Specs.thy and

T. Nipkow. Automatic Functional Correctness Proofs for Functional
Search Trees. Interactive Theorem Proving, LNCS, 2016.
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© Abstract Data Types
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A methodological interlude:

A closer look at ADT principles
and their realization in Isabelle

Set and binary search tree as examples
(ignoring delete)
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© Abstract Data Types
Defining ADTs
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ADT = interface + specification
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Example (Set interface)

empty :: 's
insert :: 'a = 's = s
isin :: s = 'a = bool

We assume that each ADT describes one
Type of Interest T

Above: T ='s
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Model-oriented specification

Specify type T via a model = existing HOL type A
Motto: 7T should behave like A
Specification of “behaves like" via an
® abstraction function o :: T = A
Only some elements of T represent elements of A:
® jnvariant invar :: T = bool

« and invar are part of the interface,
but only for specification and verification purposes
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Example (Set ADT)

empty :: ..

imnsert :: ...

1SN ..

set :: 's = 'a set (name arbitrary)
invar :: 's = bool  (name arbitrary)

set empty = {}
invar s = set(insert x s) = set s U {z}
invar s = isin s ¢ = (z € set s)

mvar empty
invar s = invar(insert x s)
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In Isabelle: locale
locale Set =
fixes empty :: 's
fixes insert :: 'a = 's = s
fixes isin :: 's = 'a = bool
fixes set :: 's = 'a set
fixes invar :: 's = bool
assumes set empty = {}
assumes invar s = isin s * = (x € set s)
assumes invar s = set(insert x s) = set s U {x}
assumes nvar empty
assumes invar s = invar(insert  s)

See HOL/Data Structures/Set _Specs.thy
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Formally, in general

To ease notation, generalize « and invar (conceptually):
a is the identity and invaris True
on types other than T

Specification of each interface function f (on 7):

e fmust behave like some function f4 (on A):
mvar L N ... N\ tnovar t, —>

alfty .. ty) = fa (a ty) ... (aty)

(v is a homomorphism)

® {must preserve the invariant:
invar tp A ... A invar t, = invar(f t; ... t,)
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© Abstract Data Types

Using ADTs

72



The purpose of an ADT is to provide a context
for implementing generic algorithms
parameterized with the interface functions of the ADT.
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Example

locale Set =
fixes ..
assumes ...
begin

fun set_of_list where
set_of list [| = empty |
set_of list (x # xs) = insert x (set_of list xs)

lemma invar(set_of list s)
by(induction xs)

(auto simp: invar_empty invar_insert)

end
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© Abstract Data Types

Implementing ADTs
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® Implement interface
® Prove specification

Example

Define functions isin and insert on type ‘a tree with
invariant bst.

Now implement locale Set:
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In Isabelle: interpretation

interpretation Set
where empty = Leaf and isin = isin
and insert = insert and set = set_tree and invar = bst
proof
show set_tree Leaf = {} (proof)
next
fix s assume bst s
show set_tree (insert z s) = set_tree s U {z}

{proof)

next
ged
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Interpretation of Set also yields
e function set_of_list :: 'a list = 'a tree
e theorem bst (set_of list xs)
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Now back to search trees ..
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@ 2-3 Trees
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HOL/Data_Structures/
Tree23_Set.thy
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2-3 Trees

datatype ‘a tree23 = ()
| Node2 ('a tree23) 'a ('a tree23)
| Node3 ('a tree23) 'a (a tree23) 'a (‘a tree23)

Abbreviations:

Node2 [ a r

(L, a, 7)
T) Node3 lambr

a
<l7 a, m, bu
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181N

isin (I, a, m, b, r)y x =
(case cmp x a of
LT = sin lx
| EQ = True
| GT = case cmp x b of
LT = isin m x
| EQ = True
| GT = isin r x)

Assumes the usual ordering invariant
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Structural invariant complete

All leaves are at the same level:
complete () = True

complete (I, _, r) =
(h(l) = h(r) A complete I N complete 1)

complete (I, ., m, _, 1) =

(h(D) = h(m) A B(m) = h(r) A

complete [ A complete m N complete )

Lemma
complete t = 2D < |¢| + 1
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Insertion

The idea:

Leaf ~- Node2
Node2 ~~ Node3
Node3 ~» overflow, pass 1 element back up
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Insertion

Two possible return values:

® tree accommodates new element
without increasing height: 717t

® tree overflows: OF [ x r

datatype ‘a upl = TI ('a tree23)
| OF (a tree23) 'a ('a tree23)

treel :: 'a upl = 'a tree23
treel (TIt) =t
treel (OF lar) = (l, a, 1)
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insert :: 'a = 'a tree23 = 'a tree23
insert x t = treel (ins x t)

ins :: 'a = 'a tree23 = 'a upl

Insertion
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Insertion

insx () = OF () z ()
ins x (l, a, 1) =
case cmp z a of
LT = case ins z [ of
TI = TI(l', a, 7)
‘ OF L bly= TI <Z1, b, v, a, ’/’>
| EQ = TI(l, a, 1)
| GT = case ins z r of
TI ' = TI (I, a, r)
| OF ry by = TI{l, a, r, b, 1)
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Insertion
ins x (I, a, m, b, 1) =
case cmp x a of
LT = case ins x [ of
TI! = TI(l', a, m, b, 1)
| OF by ¢l = OF (L, ¢, ) a (m, b, 1)
| EQ = TI (I, a, m, b, r)
| GT =
case cmp z b of
LT = case ins x m of
TIm'= TI(l, a, m’, b, )
| OF my ¢ my = OF (l, a, my) ¢ (mg, b, 1)
| EQ = TI (I, a, m, b, 1)
| GT = case ins z r of
AT ol T /T o o B o
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Insertion preserves complete

Lemma

complete t =

complete (treel (ins a t)) A hl (ins a t) = h(t)
where hl :: 'a upl = nat

hI (TIt) = h(t)

hi (OF [ a r) = h(])

Proof by induction on ¢. Base and step automatic.

Corollary
complete t => complete (insert a t)
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Deletion

The idea:

Node3 ~» Node2
Node2 ~~ underflow, height decreases by 1

Underflow: merge with siblings on the way up
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Deletion

Two possible return values:
® height unchanged: 7D t
® height decreased by 1: UF' ¢

datatype ‘a upD = TD ('a tree23) | UF ('a tree23)

t
t

treeD (TD t)
treeD (UF t)
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delete :: 'a = 'a tree23 = 'a tree23
delete © t = treeD (del z t)

del :: 'a = 'a tree23 = 'a upD

Deletion
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Deletion

del z () = TD ()

del z {{), a, ()) =
(if z = a then UF () else TD ((), a, ()))

del z (), a, (), b, ()) = ...



del x (I, a, 1) =
(case cmp x a of

LT = node2l (del z 1) a r
| EQ = let (a', t) = split-min rin node22 [ o’ t
| GT = node22 | a (del x 1))

node2l (TD t) a t = TD (t;, a, tp)
node2l (UF tl) a <t2, b, t3> = UF <t1, a, tg, b, t3>
node2l (UF t) a (ta, b, t3, ¢, t4) =
b

TD <<t1, a, t2>, ; <t37 C, t4>>

Analogous: node22
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Deletion preserves complete

After 13 simple lemmas:

Lemma

complete t = complete (treeD (del z 1))
Corollary

complete t => complete (delete x t)
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Beyond 2-3 trees

datatype 'a tree234 =
Leaf | Node2 ... | Node3 ... | Node4 ...

Like 2-3 trees, but with many more cases
The general case:

B-trees and (a, b)-trees
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@® Red-Black Trees
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HOL/Data_Structures/
RBT Set.thy
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Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees;
use color to express grouping

9;
<t17a’7t2>
<t17a7t27b7t3>
<t1,a,t2,b,t3,c,t4>

{
<t1 a t2>

<<t1,a t2> btg) or <t1, <t2,b,t3>>
<<IL1,(Z t2> <t3,C,t4>>

IR AR

Red means “l am part of a bigger node”
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Structural invariants

The root is
Every () is considered Black.
If a node is Red,

All paths from a node to a leaf have the same
number of

101



Red-black trees

datatype color = Red | Black
type_synonym ’‘a 7bt = (‘a X color) tree
Abbreviations:

Rlar
Blar

Node [ (a, Red) r
Node [ (a, Black) r

102



Color

color :: 'a rbt = color

color () = Black
COlOT‘ <77 (77 C)? 7> = C

paint :: color = 'a rbt = 'a rbt

paint ¢ ) = ()
paint ¢ (I, (a, -), ) = (I, (a, ¢), 1)
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Structural invariants

rbt :: 'a rbt = bool
rbt t = (inve t A invh t A\ color t = Black)

inve = 'a rbt = bool

inve () = True

inve (I, (, ¢), ry =

((¢c = Red — color | = Black N color r = Black) N\
inve [ A inve )
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Structural invariants

invh 2 'a bt = bool

invh () = True
invh (1, (_, ), r) = (bh(l) = bh(r) A invh I A invh T)

bheight :: 'a rbt = nat
bh(()) = 0

bh(({l, (-, ¢), -)) =
(if ¢ = Black then bh(l) + 1 else bh(l))
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Logarithmic height

Lemma
rbt t = h(t) < 2 * logs |11

Intuition: A(t) / 2 < bh(t) < mh(t) < logs |t

106



Insertion
insert 2 'a = 'a rbt = 'a rbt
insert x t = paint Black (ins z t)

ins :: 'a = 'a rbt = 'a rbt
sz () = R {) 2 {
ins z (B lar)= (case cmp = a of
LT = baliL (ins x 1) ar
| EQ = Blar
| GT = baliR [ a (ins x 1))

ins x (Rl ar) = (case cmp x a of
LT= R(inszl)ar
| EQ= Rlar
| GT = Rla(inszr))
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Adjusting colors

baliL, baliR :: 'a rbt = 'a = 'a rbt = 'a bt
e Combine arguments [ a rinto tree, ideally ([, a, 7)

® Treat invariant violation Red-Red in [/r
baliL (R (R tl a tg) a9 tg) as t4
=R (B tl aj tg) as (B tg as t4)
baliL (R tl ai (R tg a9 tg)) as t4
=R (B tl aj tz) as (B tg as t4)
® Principle: replace Red-Red by Red-Black
e Final equation:
baliL lar= Blar

e Symmetric: baliR
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Preservation of invariant

After 14 simple lemmas:

Theorem
rbt t = rbt (insert x t)
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Deletion code
delete © t = paint Black (del z t)

del - () = ()
del x (I, (a, ), ry =
(case cmp x a of
LT =
if [ £ () A color | = Black
then baldL (del 1) a relse R (del z 1) ar
| EQ =
if 7= () then [
else let (o', r') = split-min r
in if color r = Black then baldR | o' 1’
else R1a'r
| GT =

111



Deletion code

split-min (I, (a, ), 1) =
(if 1= () then (a, 1)
else let (z, I) = split_min |
in (z, if color | = Black then baldL " a r
else R1I'ar))

baldL (R tl a tg) b t3 =R (B tl a tg) b tg
baldL tl a (B tg b tg) = baliR tl a (R tg b tg)
baldL tl a (R (B tg b tg) C t4) =

R (Bt aty) b (baliR t3 ¢ (paint Red ty))
baldL tl a tg =R tl a tg
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Deletion proof

After a number of lemmas:

[invh t; inve 1]
= invh (del z t) A
(color t = Red —
bh(del z t) = bh(t) A inve (del x t)) A
(color t = Black —
bh(del z t) = bh(t) — 1 A invc2 (del x t))

rbt t = rbt (delete x t)
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Source of code

Insertion:
Okasaki's Purely Functional Data Structures

Deletion partly based on:

Stefan Kahrs. Red Black Trees with Types.
J. Functional Programming. 1996.
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@® More Search Trees
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@® More Search Trees
AVL Trees
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AVL Trees

[Adelson-Velskii & Landis 62]

e Every node (I,_,r) must be balanced:
[A(l) = h(r)] <1

e Verified Isabelle implementation:
HOL/Data _Structures/AVL Set.thy
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http://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/AVL_Set.html

@® More Search Trees

Weight-Balanced Trees
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Weight-Balanced Trees

[Nievergelt & Reingold 72,73]

Parameter: balance factor 0 < o < 0.5

Every node (I,_,r) must be balanced:

a < |l/([ly + |rl1) € 1-a

Insertion and deletion: single and double rotations
depending on subtle numeric conditions
Nievergelt and Reingold incorrect

Mistakes discovered and corrected by [Blum &
Mehlhorn 80] and [Hirai & Yamamoto 2011]

Verified implementation
in Isabelle’s Archive of Formal Proofs.
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https://www.isa-afp.org/entries/Weight_Balanced_Trees.html

@® More Search Trees

AA Trees
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AA trees

[Arne Andersson 93, Ragde 14]

Simulation of 2-3 trees by binary trees
<7f1,a,t2,b,t3> ~ <t1,a,<t2,b,t3>>

Height field (or single bit) to distinguish
single from double node

Code short but opaque

4 bugs in delete in [Ragde 14]:

non-linear pattern; going down wrong subtree;
missing function call; off by 1
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AA trees

[Arne Andersson 93, Ragde 14]

After corrections, the proofs:

e Code relies on tricky pre- and post-conditions
that need to be found

e Structural invariant preservation
requires most of the work

123



@® More Search Trees

Scapegoat Trees
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Scapegoat trees
[Anderson 89, Igal & Rivest 93]

Central idea:

Don't rebalance every time,
Rebuild when the tree gets “too unbalanced”

® Tricky: amortized logarithmic complexity analysis

e \erified implementation
in Isabelle’s Archive of Formal Proofs.
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https://www.isa-afp.org/entries/Root_Balanced_Tree.html

@® Union, Intersection, Difference on BSTs
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One by one (Union)

Let ¢(z) = cost of adding 1 element to set of size z

Cost of adding m elements to a set of n elements:
c(n)+---4+cn+m-—1)

—> choose m < n = smaller into bigger

If ¢(z) =logyz =
Cost = O(m *logy(n+ m)) = O(m * logy n)

Similar for intersection and difference.
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We can do better than O(m * log, n)
This section:
A parallel divide and conquer approach
Cost: O(m * logy(£ 4 1))
Works for many kinds of balanced trees
For ease of presentation: use concrete type tree
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Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with ‘b-augmented trees:

(‘a x 'b) tree

We work with this type of trees without committing to
any particular kind of balancing schema.
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Just join

Can synthesize all BST interface functions from just one
function:

join l ar ~ Nodel (a, ) r+ rebalance

Thus join determines the balancing schema
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Just join

Given join :: tree = 'a = tree = tree
(where tree abbreviates (‘a,’b) tree), implement

union :: tree = tree = tree
inter :: tree = tree = tree
diff :: tree = tree = tree
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union ty thp =
(If tl = <> then t2
else if &, = () then ¢
else case t; of
<l1, (CL, b), 7’1> =
let (b, x, o) = split t, a;
"' = union l I;
r’ = union r ™
in join I" a 1)
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split :: tree = 'a = tree X bool X tree

split () = ({), False, ()
split (I, (a, ), 1) =
(case cmp x a of
LT =
let (h, b, k) = split | x
in (I, b, join kb a r)
| EQ = (I, True, 1)
| GT =
let (71, b, rv) = split r x
in (join l a1, b, 12))
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nter 4 th =
(if t1 = () then ()
else if &, = () then ()
else case t; of
(b, (a, z), 1) =
let (b, b, 12) = split t, a;
' = inter i ly;
r' = inter r
in if b then join I a r'
else join2 I' r')
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join2 :: tree = tree = tree

join2 [ r=

(if = () then [

else let (m, ') = split-min rin join [ m 1’

split_min :: tree = 'a X tree
split-min (I, (a, ), 1) =
(if [ = () then (a, 1)

else let (m, I') = split-min l'in (m, join I' a 1))
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diff t, by =
(if t1 = () then ()
else if &, = () then ¢
else case ty of
<l2, (CL, b), 7’2> =
let (h, z, 1) = split t; a;
l/ = d’&ﬁ ll lg;
r' = diff
in join2 ' ')
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insert and delete

insert x t = (let (I, b, r) = split t = in join [ x 1)

delete z t = (let (I, b, r) = split t x in join2 L)
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@® Union, Intersection, Difference on BSTs
Correctness
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Specification of join and inv

e set_tree (join | a r) = set_tree [ U {a} U set_tree r
e bst (I, (a, b), ry = bst (join l a 1)
Also required: structural invariant inw:
® inv ()
e inv (I, (a, b), 1) = inv A invr
e [inv I inv 1] = inv (join l a T)

Locale context for def of union etc
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Specification of union, inter, diff

ADT /Locale Set2 = extension of locale Set with
union, inter, diff :: 's = 's = s

[invar sy; invar s9]

—> set (union s s2) = set s U set $o

o [invar s1; invar s3] = invar (union s $7)

e __inter ..

o .diff ..

We focus on union.

See HOL/Data Structures/Set _Specs.thy
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Correctness lemmas

for union etc code
In the context of join specification:

® hst ty —
set_tree (union t ty) = set_tree t; U set_tree ty

o [bst ty; bst to] = bst (union t t)
o [inv t1; inv ] = inv (union t; ty)
Proofs automatic (more complex for inter and diff)

Implementation of locale Set2:

interpretation Set2 where union = union ..
and set = set_tree and invar = (At. bst t A inv t)
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HOL/Data_Structures/
Set2_Join.thy



@® Union, Intersection, Difference on BSTs

Join for Red-Black Trees

143



join | a r— The idea

Assume [is “smaller” than r:

® Descend along the left spine of r
until you find a subtree t of the same “size” as I.

® Replace ¢ by (/,a,t).
e Rebalance on the way up.
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join lxr=
(if bheight r < bheight |
then paint Black (joinR | x )
else if bheight [ < bheight r
then paint Black (joinL [ x 1) else B [ x )

joinL [ x r=
(if bheight v < bheight [ then R [ x r
else case r of
(' (', Red), "y = R (joinL Lz 1) z' 1’
| (', (2!, Black), 'y = baliL (joinL L z 1) z' 1)

Need to store black height in each node
for logarithmic complexity
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Thys/Set2 Join RBT.thy

146



Literature

The idea of “just join":
Stephen Adams. Efficient Sets — A Balancing Act.
J. Functional Programming, volume 3, number 4, 1993.

The precise analysis:

Guy E. Blelloch, D. Ferizovic, Y. Sun.

Just Join for Parallel Ordered Sets.

ACM Symposium on Parallelism in Algorithms and
Architectures 2016.
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@ Tries and Patricia Tries
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Trie

[Fredkin, CACM 1960]

Name: reTRIEval

® Tries are search trees indexed by lists
® Tries are tree-shaped DFAs
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Example Trie

{ a, an, can, car, cat }
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@ Tries and Patricia Tries
Tries via Functions

151



HOL/Data_Structures/
Trie Fun.thy
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Trie

datatype ‘a trie = Nd bool ('a = 'a trie option)

Function update notation:
fla :=b) = (Az. if x = a then b else fx)
fla— b) = fla := Some b)

Next: Implementation of ADT Set
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empty = Nd False (A_. None)

empty
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181N

isin (Ndbm) [] = b

isin (Nd b m) (k # zs) = (case m k of
None = False
| Some t = isin t xs)



msert

insert [| (Nd b m) = Nd True m

insert (x # zs) (Nd b m) =
let s = case m z of
None = empty
| Some t =t
in Nd b (m(z — insert xs s))
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delete

delete [| (Nd b m) = Nd False m

delete (z # xs) (Nd b m) =
Nd b (case m z of
None = m
| Some t = m(z +— delete zs t))

Does not shrink trie — exercisel
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Correctness:
Abstraction function

set 2 'a trie = 'a list set

set t = {xs. isin t zs}

Invariant is True
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Correctness theorems

set empty = {}

isin t s = (zs € set t)

set (insert xs t) = set t U {xs}
set (delete xs t) = set t — {xs}

No lemmas required
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Abstraction function via sin

set t = {zs. isin t xs}

e Trivial definition
® Reusing code (isin) may complicate proofs.
e Separate abstract mathematical definition may
simplify proofs
Also possible for some other ADTs, e.g. for Map:
lookup :: 't = ('a = 'b option)
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@ Tries and Patricia Tries

Binary Tries and Patricia Tries
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HOL/Data_Structures/
Tries Binary.thy
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Trie

datatype trie = Lf | Nd bool (trie x trie)

Auxiliary functions on pairs:

sel2 :: bool = 'a X 'a = 'a
sel2 b (a1, ag) = (if b then ay else ay)

mod2 :: ('a = 'a) = bool = 'a x 'a = 'a x 'a
mod2 f b (a1, az) = (if b then (a1, f as) else (f a1, a2))
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empty = Lf

empty
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181N

isin Lf ks = False

isin (Nd b Ir) ks = (case ks of
=0
| k# x = isin (sel2 k Ir) x)
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msert

insert || Lf = Nd True (Lf, Lf)
insert [| (Nd b Ir) = Nd True Ir

insert (k # ks) Lf =
Nd False (mod2 (insert ks) k (Lf, Lf))

insert (k # ks) (Nd b Ir)
Nd b (mod2 (insert ks) k Ir)
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delete

delete ks Lf = Lf

delete ks (Nd b Ir) =
case ks of

| = node False Ir
| k # ks’ = node b (mod2 (delete ks') k Ir)

Shrink trie if possible:
node b Ir = (if = b A\ Ir = (Lf, Lf) then Lfelse Nd b Ir)
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Correctness of implementation

Abstraction function:

set_trie t = {xs. isin t xs}

o isin (insert xs t) ys = (xs = ys V isin t ys)
—> set_trie (insert xs t) = set_trie t U {xs}

e isin (delete zs t) ys = (xs # ys N isin t ys)
—> set_trie (delete xs t) = set_trie t — {xs}
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From tries to Patricia tries

O ~ car
C S t
O ® ®
a
O
r
@)
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Patricia trie

datatype trieP = LfP
| NdP (bool list) bool (trieP x trieP)
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isinP LfP ks = False

isinP (NdP ps b lr) ks =
(let n = length ps
in if ps = take n ks
then case drop n ks of
= b
| k # ks’ = isinP (sel2 k Ir) ks’
else False)

189
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Splitting lists

split xs ys = (zs, zs', ys’)
iff zs is the longest common prefix of zs and ys
and xs'/ys’ is the remainder of zs/ys
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msertP

insertP ks LfP = NdP ks True (LfP, LfP)

insertP ks (NdP ps b lr) =
case split ks ps of
(gs, [, []) = NdP ps True Ir
| (gs, [, p # ps’) =
let t = NdP ps’ b lr
in NdP gs True (if p then (LfP, t) else (t, LfP))
| (gs, k # ks', []) = NdP ps b (mod2 (insertP ks') k r)
| (gs, k # ks', p # ps') =
let tp = NdP ps’ b lr; tk = NdP ks' True (LfP, LfP)
in NdP gs False (if k then (tp, tk) else (tk, tp))
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deleteP

deleteP ks LfP = LfP

deleteP ks (NdP ps b lr) =
(case split ks ps of
(gs, ks', p#ps’) = NdP ps b Ir |
(gs, k#ks', []) =
nodeP ps b (mod2 (deleteP ks') k Ir) |
(gs, [], []) = nodeP ps False Ir)
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Stepwise data refinement

View trieP as an implementation (“refinement”) of trie

Type Abstraction function

bool list set

T set_trie
trie
T abs_trieP
trieP

= Modular correctness proof of trieP
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abs_trieP :: trieP = trie

abs_trieP LfP = Lf

abs_trieP (NdP ps b (I, r)) =
prefix_trie ps (Nd b (abs_trieP I, abs_trieP r))

prefiz_trie :: bool list = trie = trie
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Correctness of trieP w.r.t. trie
e isinP t ks = isin (abs_trieP t) ks
e abs_trieP (insertP ks t) = insert ks (abs_trieP t)
® abs_trieP (deleteP ks t) = delete ks (abs_trieP t)

isin (prefiz_trie ps t) ks =

(ps = take (length ps) ks A isin t (drop (length ps) ks))
prefiz_trie ks (Nd True (Lf, Lf)) = insert ks Lf

insert ps (prefiz_trie ps (Nd b lr)) = prefiz_trie ps (Nd True Ir)
insert (ks @ ks') (prefiv_trie ks t) = prefix_trie ks (insert ks’ t)
prefix_trie (ps Q ¢s) t = prefix_trie ps (prefiz_trie gs t)

split ks ps = (gs, ks', ps’) =

ks = qs Q ks’ A ps = qs Q ps' A (ks'" £ [| A ps’ # [| — hd ks’ # hd ps’)
(prefix_trie xzs t = Lf) = (zs =[] A t = Lf)

(abs_trieP t = Lf) = (t = LfP)

delete xs (prefiz_trie xs (Nd b (1, r))) =

(if (I, r) = (Lf, Lf) then Lf else prefiz_trie s (Nd False (1, 1))
delete (zs @Q ys) (prefiz_trie xs t) =

(if delete ys t = Lf then Lf else prefiz_trie xs (delete ys t))
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Correctness of trieP w.r.t.
bool list set

Define set_trieP = set_trie o abs_trieP

= Overall correctness by trivial composition of
correctness theorems for trie and trieP

Example:
set_trieP (insertP zs t) = set_trieP t U {xs}
follows directly from

abs_trieP (insertP ks t) = insert ks (abs_trieP t)
set_trie (insert zs t) = set_trie t U {xs}
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Chapter 9

Priority Queues



@ Priority Queues

@ Leftist Heap

@ Priority Queue via Braun Tree
@® Binomial Heap

@ Skew Binomial Heap
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@ Priority Queues
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Priority queue informally

Collection of elements with priorities

Operations:

empty

emptiness test

insert

get element with minimal priority
delete element with minimal priority

We focus on the priorities:
element = priority
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Priority queues are multisets

The same element can be contained multiple times
in a priority queue
_—
The abstract view of a priority queue is a multiset
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Interface of implementation

The type of elements (= priorities) ‘a is a linear order

An implementation of a priority queue of elements of
type ’‘a must provide

An implementation type ’q
empty :: 'q

is_empty :: 'qg = bool
insert :: 'a = g =g
get_min :: 'g = 'a

del_min :: 'qg = 'q
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More operations

merge :: ' = ‘g = g
Often provided

decrease key/priority
A bit tricky in functional setting
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Correctness of implementation

A priority queue represents a multiset of priorities.
Correctness proof requires:

Abstraction function: mset :: ‘g = 'a multiset
Invariant: invar :: g = bool
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Correctness of implementation
Must prove invar ¢ =

mset empty = {#}

is_empty q = (mset ¢ = {#})

mset (insert  q) = mset q + {#Ha#}

mset q # {#} = get-min ¢ = Min_mset (mset q)

mset ¢ # {#} =
mset (del_min q) = mset q — {#Fget-min q#}

mvar empty
invar (insert x q)
invar (del_min q)
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Terminology

A binary tree is a heap if for every subtree
the root is < all elements in that subtree.

heap () = True

heap (I, m, r) =

((Vxeset_tree [ U set_tree r. m < ) A
heap I N\ heap )

The term “heap” is frequently used synonymously with
“priority queue”.
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Priority queue via heap

empty = ()

is_empty h = (h = ())

get-min {_, a, ) = a

Assume we have merge

insert a t = merge (), a, ()) t
del_min (I, a, vy = merge | r
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Priority queue via heap

A naive merge:

merge t; t, = (case (t,t) of
(0 -) = & |
(= )=t |
(<l1,a,1,7’1>, <l2,a2,7’2>) =
if a; < ap then (merge Iy ry, a1, to)
else (t1, ay, merge by 15)

Challenge: how to maintain some kind of balance
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@ Leftist Heap

191



HOL/Data_Structures/
Leftist_Heap.thy
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Leftist tree informally

In a leftist tree, the minimum height of every left child is
> the minimum height of its right sibling.

—> m.h. = length of right spine

Merge descends along the right spine.
Thus m.h. bounds number of steps.

If m.h. of right child gets too large: swap with left child.
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Implementation type

type_synonym ’a lheap = ('a X nat) tree
Abstraction function:

mset_tree :: 'a lheap = 'a multiset
mset_tree () = {#}

mset_tree (I, (a, ), r) =

{#a#} + mset_tree | + mset_tree r
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ltree ::

ltree ()
(1

[tree

(mh(r)

mht ::
mht ()

mht (_, (_

)

3
<m

Leftist tree

'a lheap = bool

True

n),

r =

h(l) A n= mh(r) + 1 A ltree I A ltree r)

'a lheap = nat
=0
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Leftist heap invariant

invar h = (heap h N ltree h)
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merge
Principle: descend on the right

merge () t =t

merge t () =t

merge ((b, (a1, -), ) = &) ((b, (a2, -), 1) =: b)) =
(if @y < ay then node Iy a; (merge r ty)

else node by as (merge t; 3))

node :: 'a lheap = 'a = 'a lheap = 'a lheap

node [ a r =

(let mhl = mht I, mhr = mht r

in if mhr < mhl then (I, (a, mhr + 1), r)
else (r, (a, mhi + 1), )
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merge

merge ((&, (a1, m), 1) =: )

(b (a2, n2), 12) =t o) =

(if @y < ay then node Iy a; (merge r1 ty)
else node by as (merge t; 13))

Function merge terminates because
decreases with every recursive call.

198



Functional correctness proofs

including preservation of invar

Straightforward
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Logarithmic complexity

Correlation of rank and size:
Lemma 279 < |4

Complexity measures T merge, T_insert T_del_min:

count calls of merge.

Lemma [ltree [; ltree 1]

= T-merge [ ¥ < mh(l) + mh(r) + 1
Corollary [ltree [; ltree 1]

—> T-merge [ r < logs || + logs |71 + 1
Corollary

ltree t => T_insert  t < logs |t + 3

Corollary
ltree t = T delmin t < 2 x logy [t|y + 1
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Can we avoid the height info in each node?
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@ Priority Queue via Braun Tree

202



Archive of Formal Proofs

https://www.isa-afp.org/entries/Priority_
Queue Braun.shtml

203


https://www.isa-afp.org
https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml
https://www.isa-afp.org/entries/Priority_Queue_Braun.shtml

What is a Braun tree?

braun :: 'a tree = bool

braun () = True
braun (I, z, r) =
(|l = || V |l| = || + 1) A braun I A braun r)

1

Lemma braun t = 20 < 2 % [t| + 1
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|dea of invariant maintenance

braun () = True

braun (I, z, r) =

(| = || V|| =1|r + 1) A braun I A braun r)

Let t = (I, z, ). Assume braun t

Add element: to r, then swap subtrees: ' = (', z, I)

To prove braun t" ||| < |r| A || < |l + 1 O

Delete element: from [, then swap subtrees: t' = (r, z, ')
To prove braun t" || < || A |r] < |U| + 1 O
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Priority queue implementation

Implementation type: ‘a tree

Invariants: heap and braun

No merge — insert and del_min defined explicitly
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msert

insert :: 'a = 'a tree = 'a tree

insert a () = ({), a, ()
insert a (I, x, r) =
(if @ < z then (insert x r, a, l) else (insert a r, x, I))

Correctness and preservation of invariant straightforward.
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del_min

del_min :: 'a tree = 'a tree

del-min () = ()

del_min ((), z, r) = ()

del_min (I, x, ) =

(let (y, I) = del left l'in sift_down r y )

® Delete leftmost element
@ Sift y from the root down
Reminiscent of heapsort, but not quite ...
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del_left ::

del left ((), x
del_left (I,
(et (3, 1)

'a tree = 'a x 'a tree

f >

y 1) = (2 7)

del_left Lin (y, (r, z, I'}))

del_left
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sift_down

sift_down :: 'a tree = 'a = 'a tree = 'a tree

sift.down () a_ = ({), a, ()

sift_-down ((), x, ) a () =

(if @ < z then (((), z, ()), a, ())

else (((), a, (}), z. ()

sift_-down ({l, =1, r1) =: t) a ({(b, 22, 12) =: )

if a <2 A a< xthen (¢, a, t)

else if 1 < mp then (sift_down l; a ry, zy, o)
else (t1, @, sift_down ly a 15)

Maintains braun
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Functional correctness proofs
for del_min

Many lemmas, mostly straightforward
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Logarithmic complexity

Running time of insert, del left and sift_down (and
therefore del_min) bounded by height

Remember: braun t = 2M) < 2 |¢| + 1
—

Above running times logarithmic in size
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Source of code

Based on code from
L.C. Paulson. ML for the Working Programmer. 1996
based on code from Chris Okasaki.
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Sorting with priority queue

pq || = empty
pq (z#xs) = insert x (pq s)

mins q =
(if is_empty q then []
else get_min h # mins (del_min h))

sort_pqg = mins o pq

Complexity of sort: O(nlogn)
if all priority queue functions have complexity O(logn)
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@® Binomial Heap
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HOL/Data_Structures/
Binomial Heap.thy
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Numerical method

Idea: only use trees ¢; of size 27

Example
To store (in binary) 11001 elements: [#y,0,0,#3,%4]

Merge ~ addition with carry
Needs function to combine two trees of size 2°
into one tree of size 2/*1
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Binomial tree

datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)

Invariant: Node of rank r has children [¢,_1, ..., ]
of ranks [r—1, ..., 0]

invar_btree (Node r  ts) =
((V teset ts. invar_btree t) A\ map rank ts = rev [0..<7])

Lemma
invar_btree t = |t| = 2mnk !
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Combining two trees

How to combine two trees of rank 7
into one tree of rank 7-+1

link (Node r x; ts; =: t) (Node 1" 1y tsy =: ) =
(if 7y < a5 then Node (r + 1) xy (to # ts1)
else Node (r+ 1) z (t # ts9))

219



Binomial heap

Use sparse representation for binary numbers:
[t9,0,0,3,14] represented as [ (0,%), (3,%3),(4,t1) ]

type_synonym ’a heap = 'a tree list
Remember: t¢ree contains rank
Invariant:

moar ts =
((V teset ts. invar_tree t) N
sorted_wrt (<) (map rank ts))
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Inserting a tree into a heap

Intuition: propagate a carry

Precondition:
Rank of inserted tree < ranks of trees in heap

ins_tree t || = [{]

ins_tree ty (ty # ts) =

(if rank t; < rank t, then t; # & # s
else ins_tree (link t; to) ts)
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merge

merge ts; [| = ts

merge || tso = tso

merge (ty # tsy =: hy) (to # tsy =: hy) =

(if rank t; < rank ty then t; # merge ts; hy

else if rank to < rank t; then ty # merge hy tso
else ins_tree (link t; t) (merge tsy tso))

Intuition: Addition of binary numbers
Note: Handling of carry after recursive call
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Get/delete minimum element
All trees are min-heaps.

Smallest element may be any root node:
ts # || = get-min ts = Min (set (map root ts))

Similar:
get_min_rest :: 'a tree list = 'a tree x 'a tree list
Returns tree with minimal root, and remaining trees

del_min ts =
(case get_min_rest ts of
(Node r z tsy, tsy) = merge (rev tsy) tsy)

Why rev? Rank decreasing in ts; but increasing in ts;
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Complexity

Recall: |t| = grank t
Similarly for heap: |t| = grank ¢
Complexity of operations: linear in length of heap

i.e. logarithmic in number of elements
(invar ts = length ts < logy (|ts| + 1))

Proofs: straightforward?
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Complexity of merge

merge (ty # tsy =: hy) (to # tsy =: hy) =

(if rank t; < rank t, then t; # merge ts; hy

else if rank to < rank t; then ty # merge hy tsy
else ins_tree (link t; t2) (merge ts; ts2))

Complexity of ins_tree: T ins_tree t ts < length ts + 1

A call merge t; t, (where length ts; = length ts; = n)
can lead to calls of ins_tree on lists of length 1, .., n.

> € 0(n?)
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Complexity of merge

merge (ty # tsy =: hy) (to # tsy =: hy) =

(if rank t; < rank t, then t; # merge ts; hy

else if rank to < rank t; then ty # merge hy tsy
else ins_tree (link t; t2) (merge ts; ts2))

Relate time and length of input/output:
T ins_tree t ts + length (ins_tree t ts) = 2 + length ts

length (merge ts; tso) + T-merge ts; tso
< 2 x (length ts; + length ts) + 1

Yields desired linear bound!
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Sources

The inventor of the binomial heap:

Jean Vuillemin.

A Data Structure for Manipulating Priority Queues.
CACM, 1978.

The functional version:

Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.
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@ Skew Binomial Heap
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Priority queues so far

insert, del_min (and merge)
have logarithmic complexity
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Skew Binomial Heap

Similar to binomial heap, but involving also
skew binary numbers:

dy...d, represents > 1" d;x (2771 — 1)
where d; € {0,1,2}
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Complexity

Skew binomial heap:
insert in time O(1)
del_min and merge still O(logn)
Fibonacci heap (imperative!):

insert and merge in time O(1)
del_min still O(log n)

Every operation in time O(1)?
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Puzzle

Design a functional queue
with (worst case) constant time eng and deq functions
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Chapter 10

Amortized Complexity



&) Amortized Complexity
& Hood Melville Queues
& Skew Heap

@& Splay Tree

& Pairing Heap

& More Verified Data Structures and Algorithms
(in Isabelle/HOL)
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& Amortized Complexity
Motivation
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Example

n increments of a binary counter starting with 0

WCC of one increment? O(log, n)
WCC of n increments? O(n x log, n)

O(n xlog, n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

e Fact: WCC of n increments is O(n)
WCC = worst case complexity
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The problem

WCC of individual operations
may lead to overestimation of
WCC of sequences of operations
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Amortized analysis

Idea:
Try to determine the average cost of each operation
(in the worst case!)

Use cheap operations to pay for expensive ones

Method:

e Cheap operations pay extra (into a “bank
account”), making them more expensive

® Expensive operations withdraw money from the
account, making them cheaper
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Bank account = Potential

The potential (“credit”) is implicitly “stored” in the
data structure.

Potential ® :: data-structure = non-neg. number
tells us how much credit is stored in a data structure

Increase in potential =
deposit to pay for /ater expensive operation

Decrease in potential =
withdrawal to pay for expensive operation
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Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — 0 flip

=— increment has amortized cost 2 = 1+1

Formalization via potential:
® counter = the number of 1's in counter
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& Amortized Complexity

Formalization
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Data structure
Given an implementation:
® TyperT
e Operation(s) f:: 7 =7
(may have additional parameters)
e Initial value: init :: 7
(function “empty”)
Needed for complexity analysis:
® Time/cost: T .f:: 7 = num
(num = some numeric type
nat may be inconvenient)

e Potential ¢ :: 7 = num  (creative spark!)
Need to prove: ® s > 0 and @ nit = 0
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Amortized and real cost

Sequence of operations: fi, .., f,
Sequence of states:

So = tnit, S := fi S0y wr Sn = fn Sn_1
Amortized cost := real cost + potential difference
Aip1 = T fiz1 85 + © sip1 — @ 5

—
Sum of amortized costs > sum of real costs

Z?:l Az Z?:l (T,fz Si—1 + d S; — ) S,'_l)
", Tofi siq) + © s, — @ init
Z?:l T_f; si-1

IV
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Verification of amortized cost

For each operation f:
provide an upper bound for its amortized cost

Af: 7 = num
and prove

Tfs+ ®P(fs) —Ps< Afs
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Back to example: counter

incr i bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

init = ||
O bs = length (filter id bs)

Lemma
T incr bs + @ (incr bs) — @ bs = 2

Proof by induction
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Proof obligation summary

e & s>0
e & init =0
® For every operation f:: 7 = ... = T:
TfsT+ O(fst) —Ps< Afsx
If the data structure has an invariant invar:
assume precondition invar s

If ftakes 2 arguments of type 7:
T,fsl So T + <I>(f31 So f) — D5 — D s < A,fsl So T
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Warning: real time

Amortized analysis unsuitable for real time applications:

Real running time for individual calls
may be much worse than amortized time
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Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

let counter = 0;
bad = increment counter 2™ — 1 times;
_ = incr bad,
_ = 1ncr bad,;
_ = ncr bad,;
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Warning: observer functions

Observer function: does not modify data structure
— Potential difference = 0

= amortized cost = real cost

=—> Must analyze WCC of observer functions

This makes sense because
Observer functions do not consume their arguments!

Legal: let bad = create unbalanced data structure
with high potential;

= observer bad,;

= observer bad;
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& Amortized Complexity

Simple Classical Examples

251



Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_
Complexity.shtml
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& Hood Melville Queues
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Can reverse [11,...,x,] onto ys in n steps:

([z1, 2, @3, ...\ @], ys)
— ([m, 23, -, @], 11 F# Ys)
— ([{E3, SR fEn], L2 # l # yS)

()t . #m # )

Fact
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The problem
with (front, rear) queues

® Only amortized linear complexity of eng and deq
e Problem: ([], rear) requires reversal of rear
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Solution

Do not wait for ([], rear)

Compute new front front Q rev rear
early and slowly

In parallel with eng and deq calls

Using a ‘copy’ of front and rear
“shadow queue”
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Solution

When to start? When |front| = n and |rear| = n+1

Two phases:

front = rev front
\"ﬂ;
front @ rev rear

/(

n+1
rear —  Tev rear

Must finish before original front is empty.
= Must take two steps in every eng and deq call
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Complication

Calls of deq remove elements from the original front

Cannot easily remove them from the modified copy of
front

Solution:
® Remember how many elements have been removed
® Better: how many elements are still valid
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The shadow queue

datatype 'a status =
Idle |
Rev (nat) ('a list) ("a list) (‘a list) (‘a list) |
App (nat) (‘a list) ('a list) |
Done ('a list)
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Shadow step

exec :: 'a status = 'a status

exec Idle = Idle

exec (Rev ok (x # f) f' (y # r) 1)

= Rev (ok + 1) f(z# f) r (y # 1)

exec (Rev ok || f' [y ') = App ok [ (y # 1)

exec (App (ok + 1) (z # f) ') = App ok [' (z # )
exec (App O f' r') = Done 1’

exec (Done v) = Done v
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Dequeue from shadow queue

invalidate :: 'a status = 'a status

invalidate Idle = Idle

invalidate (Rev ok f f' r ') = Rev (ok — 1) ff r o'
invalidate (App (ok + 1) f' ') = App ok f 1’/
invalidate (App O f' (z # 1)) = Done 1’

invalidate (Done v) = Done v
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The whole queue

record 'a queue = front :
lenf
rear
lenr
status ::

- a list
;onat
: la list
:onat

'a status
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eng and deq

enqg T q =
check (q(|rear := x # rear q, lenr := lenr q + 1))

deq q =
check

(q(lenf := lenf q — 1, front := tl (front q),
status := invalidate (status q)))
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check q =
(if lenr q < lenf q then ezec2 q
else let newstate =
Rev 0 (front q) [] (rear q) |]
in exec2
(q(lenf := lenf q + lenr q,
status := newstate,
rear := [|, lenr := 0))))

exec2 ¢ = (case exec (exec q) of
Done fr = q(status = Idle, front = fr]) |
newstatus = q(status = newstatus)))
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Correctness

The proof is

® casy because all functions are non-recursive
(= constant running time!)

® tricky because of invariant
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status invariant

inv_st (Rev ok f f r ') =

M+ 1= AL =1rT A ok < |f])

inv_st (App ok [ ') = (ok < [f] A |f] < [r)
inv_st Idle = True

inv_st (Done _) = True
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Queue invariant
moar q =
(lenf q = |front_list q| N
lenr q = |rev (rear q)| A
lenr ¢ < lenf q A
(case status q of
Rev ok ff rr'=
2 x lenr ¢ < |f| A
ok £ 0 A2 |fl + ok + 2 <2 |front q|
| App ok fr=
2 % lenr g < |r] A ok + 1 < 2 % |front |
| - = True) A
(F rest. front_list ¢ = front ¢ Q rest) A
(A fr. status ¢ = Done fr) A inv_st (status q))
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Queue invariant

front_list ¢ =
(case status q of
Idle = front q
| Rev ok f f r ' = rev (take ok f') Q f@Q rev r @ 1/
| App ok f' x = rev (take ok f) @Q x
| Done f=f)
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The inventors

Robert Hood and Robert Melville.
Real-Time Queue Operation in Pure LISP.
Information Processing Letters, 1981.
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& Skew Heap
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Archive of Formal Proofs

https://www.isa-afp.org/entries/Skew_Heap_
Analysis.shtml
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A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min
have amortized logarithmic complexity.

Functions insert and del_min are defined via merge

273



Ordinary binary trees

Invariant: heap

Implementation type
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merge

merge () t =t

merge h () = h

Swap subtrees when descending;:

merge ((, ar, 1) =: ) ((, a2, 12) =t ) =
(if a; < ay then (merge t, 11, a1, )

else (merge ty 9, as, b))

Function merge terminates because ...7

275



Very similar to leftist heap but
® subtrees are always swapped
® no size information needed

merge
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Functional correctness proofs

Straightforward
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Logarithmic amortized complexity

Theorem
T merge t; ty + ® (merge ) &) — 4 — @ K
< 3 xlogy (|ti]1 + |t2|1) + 1
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Towards the proof

Right heavy:
rh [ r= (if ||| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
Irh () =0
Irh (I, ,ry=rhlr+Irhl

Lemma
2t < ¢ + 1

Corollary
Irh t S 10g2 ‘t‘l
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Towards the proof

Right heavy:
rh I r= (if ||| < |r| then 1 else 0)

Number of not right heavy nodes on right spine:
rth () =0
rth (I, ,r)=1—rhlr+rihr

Lemma
27 < g + 1

Corollary
rih t S 10g2 ‘t‘l
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Potential

The potential is the number of right heavy nodes:
() =0
S ,rN=0l+Pr+rhir

Lemma
T -merge t; to + ® (merge ty &) — ® t; — O 1y
< Irh (merge t; &) + rlh t; + rlh to + 1

by (induction tl1 t2 rule: merge.induct) (auto)
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Node-Node case

Let tl = <Z1, ay, 7’1>, tg = <l2, az, 7’2>.
Case a1 < ay. Let m = merge t,

T -merge t; to + ® (merge ty &) — ® t — O 1y

=T mergeto 1 +1 +Pdm+D L +rhmi
— bt — Db

=T mergeto 1 +1 4+ P m+ rhmi
—(I)Tl—ThllTl—(I)tQ

<lrhm-+rihty+rthry +rhmil +2—1rhl n
by IH

=lrhm+rlhty+riht;+rhmi +1

= Irh (merge t; o) + rlh t1 + rlh tp + 1
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Main proof

T merge t; to + ® (merge ty &) — ® 11 — @ &

< lrh (merge ty t) + rlh ty + rlh ty + 1

< lOgQ |me7’ge t tg‘l + lOgQ ‘tl‘l + log2 |t2‘1 + 1

=logs (|t1l1 + |f2[1 — 1) + loga |t1]1 + logy |a]1 + 1

<logs (|11 + |t2|1) + logy |[t1|1 + logy |ta2]1 + 1

<logs ([tih + [t2]1) + 2 x logs ([ti|1 + [t21) + 1
because logs = + logs y < 2 x logy (z + y) if z,y > 0

— 3% logs ([t + ) + 1
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insert and del_min

Easy consequences:

Lemma
T insert a t + ® (insert a t) — o 1
< 3 x logs ([t + 2) + 2

Lemma
T delmin t + ® (delmint) — ® ¢
< 3 *loge (Jth +2) + 2
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Sources

The inventors of skew heaps:

Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

The formalization is based on

Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.
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@& Splay Tree
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A splay tree is a self-adjusting binary search tree.

Functions isin, insert and delete
have amortized logarithmic complexity.

288



Definition (splay)
Become wider or more separated.

Example
The river splayed out into a delta.
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@& Splay Tree
Algorithm
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Splay tree

Implementation type = binary tree

Key operation splay a:
©® Search for a ending up at z
where £ = a or x is a leaf node.

® Move z to the root of the tree by rotations.

Derived operations isin/insert/delete a :
© splay a
@ Perform isin/insert/delete action
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Key ideas

Move to root

Double rotations

292









Zig-zig and zig-zag

Zig-zig # two single rotations

Zig-zag = two single rotations
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Functional definition

splay :: 'a = 'a tree = 'a tree
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Zig-zig and zig-zag

[t < b; 2 < ¢; AB # ()]
— splay z ((AB, b, C), ¢, D) =
(case splay x AB of
(A, a, B) = (A, a, (B, b, (C, ¢, D))))

[z < ¢ ¢ < a; BC# ()]
= splay ¢ ((A, z, BC), a, D) =
(case splay ¢ BC of
(B, b, C) = ((A, z, B), b, (C, a, D)))
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Some base cases

< b= splay z ((A, =, B), b, C) = (A, z, (B, b, C))

r<< g —
splay = (((), a, A), b, B) = ({}, a, (4, b, B))
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Functional correctness proofs

Automatic
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@& Splay Tree

Amortized Analysis
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Potential

Sum of logarithms of the size of all nodes:
d()=0

S (Lan=p{lar+dl+dr
where ¢ t = logs (|t| + 1)

Amortized complexity of splay:

A splay a t = T splay a t + ® (splay a t) — Ot
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Analysis of splay
Theorem
[bst t; (I, a, 1) € subtrees {]
= Asplayat<3x(pt—p{lar))+1
Corollary
[bst t; x € set_tree 1]
— Asplayzt<3x(pt—1)+1
Corollary
bstt = Asplayxt <3 xpt+1

Lemma

[t # (); bst ]

— da'eset_tree t.
splay o' t = splay x t N T_splay 2’ t = T _splay =



msert
Definition
msert Tt =
(if £ = () then ((), z, ())
else case splay z t of
(l, a, 1) = case cmp z a of
LT = (I, z (), a, 1)

| EQ = (L, a, 1)

| GT = (L. a, (), z. 7))
Counting only the cost of splay:

Lemma
bst t =
Tinsert xt + ® (insert xt) — Pt <4dxpt+3
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delete

Definition
delete z t =
(if ¢ = () then ()
else case splay z t of
(L, a, ry =
if % a then (I, a, 1)
else if [ = () then r
else case splay-max [ of
(', m, vy = (I', m, r))

Lemma

bst t =
T delete a t + @ (delete at) — P t<6%pt+ 3
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Remember

Amortized analysis is only correct for single threaded
uses of a data structure.

Otherwise:

let counter = 0;
bad = increment counter 2™ — 1 times;
_ = incr bad,
_ = incr bad;
_ = 1ncr bad,;



1sin - 'a tree = 'a = bool

Single threaded = isin t a eatsup t

Otherwise:

let bad = build unbalanced splay tree;
= isin bad «;
= istn bad a;
= isin bad «;
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Solution 1:

isin - 'a tree = 'a = bool X 'a tree

Observer function returns new data structure:
Definition
s ta=
(let t' = splay a tin (case t’ of
() = Fulse
| (I, &, 1) = a =z,

t)
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Solution 2:
1s1tn = splay; 1s_root
Client uses splay before calling is_root:
Definition
is_root :: 'a = 'a tree = bool

is_root © t = (case t of
() = Fulse
| (I, a, vy = x = a)

May call is_root _ t multiple times (with the same t!)
because is_root takes constant time

—> 1is_root _ t does not eat up ¢
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181N

Splay trees have an imperative flavour and are a bit
awkward to use in a purely functional language
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Sources

The inventors of splay trees:

Daniel Sleator and Robert Tarjan.
Self-adjusting Binary Search Trees. J. ACM, 1985.

The formalization is based on

Berry Schoenmakers. A Systematic Analysis of Splaying.
Information Processing Letters, 1993.
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Implementation type

datatype ‘a heap = Empty | Hp 'a (a heap list)

Heap invariant:

pheap Empty = True

pheap (Hp z hs) =

(V heset hs. (Y ye#mset_heap h. x < y) A pheap h)

Also: E'mpty must only occur at the root
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msert

insert x h = merge (Hp x []) h

merge h Empty =

h
merge Empty h = h

merge (Hp x hsx =: hz) (Hp y hsy =: hy) =
(if z < y then Hp = (hy # hsx) else Hp y (hx # hsy))

Like function link for binomial heaps
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del_min

del_min Empty = Empty
del_min (Hp x hs) = passs (pass; hs)

passy (hy # he # hs) = merge hy hy # pass; hs
pass; hs = hs

passe || = Empty
passy (h # hs) = merge h (passy hs)
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Fusing passy o pass

merge_pairs [| = Empty

merge_pairs [h] = h

merge_pairs (hy # hy # hs) =

merge (merge hy hy) (merge_pairs hs)

Lemma
passy (passy hs) = merge_pairs hs
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Functional correctness proofs

Straightforward
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& Pairing Heap
Amortized Analysis
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Analysis

Analysis easier (more uniform) if a pairing heap is viewed
as a binary tree:

homs :: 'a heap list = 'a tree
homs || = ¢
homs (Hp x hsy # hss) = (homs hsy, z, homs hs)

hom :: 'a heap = 'a tree
hom Empty = ()
hom (Hp x hs) = (homs hs, z, ())

Potential function same as for splay trees
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Verified:

The functions insert, del_min and merge all have
O(log, n) amortized complexity.

These bounds are not tight.
Better amortized bounds in the literature:

insert € O(1), del_min € O(log, n), merge € O(1)

The exact complexity is still open.
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Archive of Formal Proofs

https://www.isa-afp.org/entries/Amortized_
Complexity.shtml
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https://www.isa-afp.org/entries/Amortized_Complexity.shtml

Sources

The inventors of the pairing heap:

M. Fredman, R. Sedgewick, D. Sleator and R. Tarjan.
The Pairing Heap: A New Form of Self-Adjusting Heap.
Algorithmica, 1986.

The functional version:

Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.
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& More Verified Data Structures and Algorithms
(in Isabelle/HOL)
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Huffman Trees
Finger Trees

B Trees

k-d Trees

Optimal BSTs
Priority Search Trees
Treaps

More trees
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https://www.isa-afp.org/entries/Huffman.shtml
https://www.isa-afp.org/entries/Finger-Trees.shtml
https://www.isa-afp.org/entries/BTree.shtml
https://www.isa-afp.org/entries/KD_Tree.shtml
https://www.isa-afp.org/entries/Optimal BST.shtml
https://www.isa-afp.org/entries/Priority_Search_Trees.shtml
https://www.isa-afp.org/entries/Treaps.shtml

Graph algorithms

Floyd-Warshall

Dijkstra Dijkstra

Maximum Network Flow
Strongly Connected Components
Kruskal Kruskal

Prim Prim
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https://www.isa-afp.org/entries/Floyd_Warshall.shtml
https://www.isa-afp.org/entries/Dijkstra_Shortest_Path.shtml
https://www.isa-afp.org/entries/Prim_Dijkstra_Simple.html.shtml
https://www.isa-afp.org/entries/EdmondsKarp_Maxflow.shtml
https://www.isa-afp.org/entries/Gabow_SCC.shtml
https://www.isa-afp.org/entries/Kruskal.shtml
https://www.isa-afp.org/entries/Relational_Minimum_Spanning_Trees.shtml
https://www.isa-afp.org/entries/Relational_Minimum_Spanning_Trees.shtml
https://www.isa-afp.org/entries/Prim_Dijkstra_Simple.html.shtml

Algorithms

Knuth-Morris-Pratt

Median of Medians
Approximation Algorithms
FFT

Gauss-Jordan

Simplex

QR-Decomposition

Smith Normal Form
Probabilistic Primality Testing
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https://www.isa-afp.org/entries/Approximation_Algorithms.shtml
https://www.isa-afp.org/entries/FFT.shtml
https://www.isa-afp.org/entries/Gauss_Jordan.shtml
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https://www.isa-afp.org/entries/Probabilistic_Prime_Tests.shtml

Dynamic programming

e Start with recursive function

e Automatic translation to memoized version incl.
correctness theorem
e Applications
® Optimal binary search tree
Minimum edit distance

Bellman-Ford (SSSP)
CYK



Infrastructure

Refinement Frameworks by Lammich:

Abstract specification

~ functional program

~~ imperative program

using a library of collection types
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Model Checkers

e SPIN-like LTL Model Checker:
Esparza, Lammich, Neumann, Nipkow, Schimpf,
Smaus 2013

e SAT Certificate Checker:
Lammich 2017; beats unverified standard tool
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Mostly in the Archive of Formal Proofs

331


https://www.isa-afp.org

	Sorting
	Binary Trees
	Search Trees
	Abstract Data Types
	2-3 Trees
	Union, Intersection, Difference on BSTs
	Tries and Patricia Tries

	Priority Queues
	Amortized Complexity
	Hood Melville Queues
	Pairing Heap
	More Verified Data Structures and Algorithms (in Isabelle/HOL)


