Functional Data Structures with Isabelle/HOL

Tobias Nipkow

Fakultät für Informatik
Technische Universität München
2022-4-26

Chapter 1

Introduction

What the course is about

Data Structures and Algorithms for Functional Programming Languages

The code is not enough!
Formal Correctness and Complexity Proofs with the Proof Assistant Isabelle

Proof Assistants

- You give the structure of the proof
- The PA checks the correctness of each step

Government health warnings:
Time consuming
Potentially addictive
Undermines your naive trust in informal proofs

Terminology

Formal $=$ machine-checked
 Verification $=$ formal correctness proof

Two landmark verifications

C compiler
Competitive with gcc -01

Xavier Leroy
INRIA Paris
using Coq

Operating system microkernel (L4)

Gerwin Klein (\& Co)
NICTA Sydney using Isabelle

Overview of course

- Week 1-5: Introduction to Isabelle
- Rest of semester: Search trees, priority queues, etc and their (amortized) complexity

What we expect from you

Functional programming experience with an ML/Haskell-like language

First course in data structures and algorithms
First course in discrete mathematics
You will not survive this course without doing the time-consuming homework

Part I Isabelle

Chapter 2

Programming and Proving

(1) Overview of Isabelle/HOL

(2) Type and function definitions
(3) Induction Heuristics
(4) Simplification

Notation

Implication associates to the right:

$$
A \Longrightarrow B \Longrightarrow C \quad \text { means } \quad A \Longrightarrow(B \Longrightarrow C)
$$

Similarly for other arrows: $\Rightarrow, \longrightarrow$

$$
\begin{array}{ccc}
A_{1} \quad \ldots & A_{n} \\
B & \text { means } \quad A_{1} \Longrightarrow \cdots \Longrightarrow A_{n} \Longrightarrow B
\end{array}
$$

(1) Overview of Isabelle/HOL

(2) Type and function definitions

(3) Induction Heuristics

(4) Simplification

$\mathrm{HOL}=$ Higher-Order Logic
$\mathrm{HOL}=$ Functional Programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!
Higher-order $=$ functions are values, too!
HOL Formulas:

- For the moment: only term $=$ term, e.g. $1+2=4$
- Later: $\wedge, \vee, \longrightarrow, \forall, \ldots$
(1) Overview of Isabelle/HOL Types and terms
Interface
By example: types bool, nat and list
Summary
Numeric Types

Types

Basic syntax:
$\tau::=(\tau)$
boob | nat | int | ...
'a|'b|...
$\tau \Rightarrow \tau$
$\tau \times \tau$
τ list
τ set
base types
type variables
functions
pairs (ascii: *)
lists
sets
user-defined types

Terms

Basic syntax:

$$
t::=
$$

$$
(t)
$$

$$
\left\lvert\, \begin{aligned}
& a \\
& t t \\
& \lambda x . t \\
& \ldots
\end{aligned}\right.
$$

constant or variable (identifier)
function application
function abstraction
lots of syntactic sugar
λ-calculus

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:
$t:: \tau$ means " t is a well-typed term of type τ ".

$$
\frac{t:: \tau_{1} \Rightarrow \tau_{2} \quad u:: \tau_{1}}{t u:: \tau_{2}}
$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called type inference.

In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term. Example: f (x::nat)

Currying

Thou shalt Curry your functions

- Curried: $f:: \tau_{1} \Rightarrow \tau_{2} \Rightarrow \tau$
- Tupled: $f^{\prime}:: \tau_{1} \times \tau_{2} \Rightarrow \tau$

Predefined syntactic sugar

- Infix: +, -, *, \#, @, ...
- Mixfix: if _ then _ else _, case _o of, ...

Prefix binds more strongly than infix:
! $f x+y \equiv(f x)+y \not \equiv f(x+y)$

Enclose if and case in parentheses:
!
(if _ then \qquad else _)

Theory = Isabelle Module

Syntax: theory MyTh
imports $T_{1} \ldots T_{n}$
begin
(definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh.thy T_{i} : names of imported theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides
(1) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary
Numeric Types

isabelle jedit

- Based on jEdit editor
- Processes Isabelle text automatically when editing . thy files (like modern Java IDEs)

Overview_Demo.thy

(1) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list Summary
Numeric Types

Type bool

datatype bool $=$ True \mid False
Predefined functions:
$\wedge, \vee, \longrightarrow, \ldots$: bool \Rightarrow bool \Rightarrow bool

A formula is a term of type bool
if-and-only-if: =

Type nat

datatype nat $=0 \mid$ Suc nat
Values of type nat: 0, Suc 0, Suc (Suc 0), ...
Predefined functions: $+, *, \ldots:$ nat \Rightarrow nat \Rightarrow nat
! Numbers and arithmetic operations are overloaded:

$$
0,1,2, \ldots:: ' a, \quad+::{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow^{\prime} a
$$

You need type annotations: $1::$ nat, $x+(y:: n a t)$ unless the context is unambiguous: Suc z

Nat_Demo.thy

An informal proof

Lemma $a d d m 0=m$
Proof by induction on m.

- Case 0 (the base case):
add $00=0$ holds by definition of $a d d$.
- Case Sue m (the induction step):

We assume add $m 0=m$, the induction hypothesis (IH).
We need to show add (Sue m) $0=$ Sue m.
The proof is as follows:
add (Sue m) $0=S u c(a d d m 0)$ by def. of $a d d$
$=$ Sue $m \quad$ by IH

Type 'a list

Lists of elements of type ' a
datatype 'a list $=$ Nil \mid Cons 'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

- [] = Nil: empty list
- $x \# x s=$ Cons $x x s$:
list with first element x ("head") and rest $x s$ ("tail")
- $\left[x_{1}, \ldots, x_{n}\right]=x_{1} \# \ldots x_{n} \#[]$

Structural Induction for lists

To prove that $P(x s)$ for all lists $x s$, prove

- $P([])$ and
- for arbitrary but fixed x and $x s$, $P(x s)$ implies $P(x \# x s)$.

List_Demo.thy

An informal proof

Lemma app (app xs ys) zs $=a p p x s(a p p y s z s)$ Proof by induction on $x s$.

- Case Nil: app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds by definition of app.
- Case Cons x xs: We assume app (app xs ys) $z s=$ app xs (app ys zs) (IH), and we need to show app $($ app $($ Cons $x x s) y s) z s=$
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
$=$ Cons $x(\operatorname{app}(a p p x s y s) z s)$ by definition of app
$=$ Cons $x($ app xs $(a p p y s z s))$ by IH
$=\operatorname{app}($ Cons $x x s)(a p p y s z s)$ by definition of $a p p_{37}$

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!
Predefined: xs @ ys (append), length, map, filter set $:$: 'a list $\Rightarrow{ }^{\prime}$ 'a set, ...
(1) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary
Numeric Types

- datatype defines (possibly) recursive data types.
- fun defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- induction performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):
" $=$ " is used only from left to right!

Proofs

General schema:
lemma name: ". .."
apply (...)
apply (...)
:
done
If the lemma is suitable as a simplification rule:
lemma name[simp]: "..."

Top down proofs

Command

sorry

"completes" any proof.
Allows top down development:
Assume lemma first, prove it later.

The proof state

1. $\wedge x_{1} \ldots x_{p} . A \Longrightarrow B$
$x_{1} \ldots x_{p}$ fixed local variables
A local assumption(s)
B actual (sub)goal

Multiple assumptions

$$
\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B
$$

abbreviates

$$
\begin{aligned}
A_{1} \Longrightarrow & \ldots
\end{aligned} A_{n} \Longrightarrow B
$$

(1) Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary
Numeric Types

Numeric types: nat, int, real

Need conversion functions (inclusions):

$$
\begin{array}{rll}
\text { int } & :: & \text { nat } \Rightarrow \text { int } \\
\text { real } & : & \text { nat } \Rightarrow \text { real } \\
\text { real_of_int } & :: & \text { int } \Rightarrow \text { real }
\end{array}
$$

If you need type real, import theory Complex_Main instead of Main

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically (with theory Complex_Main) If there are multiple correct completions, Isabelle chooses an arbitrary one

Examples

$$
\begin{aligned}
&(i:: \text { int })+(n:: \text { nat }) \rightsquigarrow \\
&((n:: \text { nat })+n):: \text { real } \rightsquigarrow \\
& \text { real } n \\
&n+n), \text { real } n+\text { real } n
\end{aligned}
$$

Numeric types: nat, int, real

Coercion in the other direction:

$$
\begin{array}{rll}
\text { nat } & : \text { int } \Rightarrow \text { nat } \\
\text { floor } & :: \text { real } \Rightarrow \text { int } \\
\text { ceiling } & :: \text { real } \Rightarrow \text { int }
\end{array}
$$

Overloaded arithmetic operations

- Basic arithmetic functions are overloaded:
$+,-, *::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
- : : ' $a \Rightarrow$ ' a
- Division on nat and int: div, mod $::{ }^{\prime} a \Rightarrow{ }^{\prime} a{ }^{\prime} a$
- Division on real: / :: ' $a \Rightarrow^{\prime} a \Rightarrow^{\prime} a$
- Exponentiation with nat: ^ $:$ ' $^{\prime} a \Rightarrow$ nat \Rightarrow ' a
- Exponentiation with real: powr :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$
- Absolute value: $a b s::$ ' $a \Rightarrow{ }^{\prime} a$

Above all binary operators are infix

(1) Overview of Isabelle/HOL

(2) Type and function definitions

(3) Induction Heuristics

(4) Simplification

(2) Type and function definitions Type definitions
Function definitions

datatype - the general case

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) t=C_{1} \tau_{1,1} \ldots \tau_{1, n_{1}}$

$$
C_{k} \tau_{k, 1} \ldots \tau_{k, n_{k}}
$$

- Types: $C_{i}:: \tau_{i, 1} \Rightarrow \cdots \Rightarrow \tau_{i, n_{i}} \Rightarrow\left(\alpha_{1}, \ldots, \alpha_{n}\right) t$
- Distinctness: $C_{i} \ldots \neq C_{j} \ldots \quad$ if $i \neq j$
- Injectivity: $\left(C_{i} x_{1} \ldots x_{n_{i}}=C_{i} y_{1} \ldots y_{n_{i}}\right)=$

$$
\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n_{i}}=y_{n_{i}}\right)
$$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Like in functional languages:

$$
\left(\text { case } t \text { of } \text { pat }_{1} \Rightarrow t_{1}|\ldots| p_{n} \Rightarrow t_{n}\right)
$$

Complicated patterns mean complicated proofs!
Need () in context

Tree_Demo.thy

The option type

datatype 'a option $=$ None \mid Some 'a
If ' a has values a_{1}, a_{2}, \ldots
then 'a option has values None, Some a_{1}, Some a_{2}, \ldots
Typical application:
fun lookup :: (' $a \times$ ' b) list $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b$ option where lookup [] $x=$ None | lookup $((a, b) \# p s) x=$
(if $a=x$ then Some b else lookup ps x)
(2) Type and function definitions Type definitions
Function definitions

Non-recursive definitions

Example
definition $s q:: n a t \Rightarrow$ nat where $s q n=n * n$
No pattern matching, just $f x_{1} \ldots x_{n}=\ldots$

The danger of nontermination

How about $f x=f x+1$?
! All functions in HOL must be total

Key features of fun

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

fun sep $::$ ' $a \Rightarrow$ ' a list \Rightarrow ' a list where
sep $a(x \# y \# z s)=x \#$ a \# sep $a(y \# z s)$
sep a $x s=x s$

primrec

- A restrictive version of fun
- Means primitive recursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:
$\begin{array}{llr}f(0) & =\ldots & \text { no recursion } \\ f(\text { Suc } n) & =\ldots f(n) \ldots & \\ g([]) & =\ldots & \text { no recursion } \\ g(x \# x s) & =\ldots g(x s) \ldots & \end{array}$

(1) Overview of Isabelle/HOL

(2) Type and function definitions

(3) Induction Heuristics

(4) Simplification

Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list \Rightarrow ' a list where

$$
\begin{array}{ll}
\operatorname{rev}[] & =[] \\
\operatorname{rev}(x \# x s) & =\operatorname{rev} x s @[x]
\end{array}
$$

A tail recursive version:
fun itrev $::$ ' a list \Rightarrow 'a list \Rightarrow ' a list where

$$
\begin{array}{ll}
i \operatorname{trev}[] & y s=y s \\
i \operatorname{trev}(x \# x s) & y s=
\end{array}
$$

lemma itrev $x s[]=$ rev $x s$

Induction_Demo.thy

Generalisation

Generalisation

- Replace constants by variables
- Generalize free variables
- by arbitrary in induction proof
- (or by universal quantifier in formula)

So far, all proofs were by structural induction because all functions were primitive recursive.
In each induction step, 1 constructor is added. In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

Computation Induction

Example

fun div2 :: nat \Rightarrow nat where
$\operatorname{div} 20=0$
$\operatorname{div} 2($ Suc 0$)=0 \mid$
$\operatorname{div} 2(\operatorname{Suc}(S u c ~ n))=\operatorname{Suc}(\operatorname{div} 2 n)$
\rightsquigarrow induction rule div2.induct:

$$
\frac{P(0) \quad P(\text { Suc } 0) \wedge n . P(n) \Longrightarrow P(\text { Suc }(\text { Suc } n))}{P(m)}
$$

Computation Induction

If $f:: \tau \Rightarrow \tau^{\prime}$ is defined by fun, a special induction schema is provided to prove $P(x)$ for all $x:: \tau$: for each defining equation

$$
f(e)=\ldots f\left(r_{1}\right) \ldots f\left(r_{k}\right) \ldots
$$

prove $P(e)$ assuming $P\left(r_{1}\right), \ldots, P\left(r_{k}\right)$.
Induction follows course of (terminating!) computation Motto: properties of f are best proved by rule f.induct

How to apply f.induct

If $f:: \tau_{1} \Rightarrow \cdots \Rightarrow \tau_{n} \Rightarrow \tau^{\prime}$:

$$
\text { (induction } a_{1} \ldots a_{n} \text { rule: f.induct) }
$$

Heuristic:

- there should be a call $f a_{1} \ldots a_{n}$ in your goal
- ideally the a_{i} should be variables.

Induction_Demo.thy

Computation Induction

(1) Overview of Isabelle/HOL

(2) Type and function definitions

(3) Induction Heuristics

(4) Simplification

Simplification means ...

Using equations $l=r$ from left to right

As long as possible

Terminology: equation \rightsquigarrow simplification rule

$$
\text { Simplification }=(\text { Term }) \text { Rewriting }
$$

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}
\end{align*}
$$

$$
\begin{align*}
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
0+\text { Suc } 0 & \leq \text { Suc } 0+x \\
\text { Suc } 0 & \leq \text { Suc } 0+x
\end{aligned}
$$

Rewriting:

$$
\begin{gathered}
\text { Suc } 0 \leq \text { Suc }(0+x) \\
0 \leq 0+x \\
\quad \stackrel{(3)}{=} \\
\quad \text { True }
\end{gathered}
$$

Conditional rewriting

Simplification rules can be conditional:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is applicable only if all P_{i} can be proved first, again by simplification.

Example

$$
\begin{aligned}
p(0) & =\text { True } \\
p(x) \Longrightarrow f(x) & =g(x)
\end{aligned}
$$

We can simplify $f(0)$ to $g(0)$ but we cannot simplify $f(1)$ because $p(1)$ is not provable.

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$
Principle:

$$
\llbracket P_{1} ; \ldots ; P_{k} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

Proof method simp

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- auto can also be modified:
(auto simp add: . . . simp del: ...)

Rewriting with definitions

Definitions (definition) must be used explicitly:

$$
\left(\operatorname{simp} \text { add: } f _d e f \ldots\right)
$$

f is the function whose definition is to be unfolded.

Case splitting with simp/auto

Automatic:

$$
\begin{gathered}
P(\text { if } A \text { then } s \text { else } t) \\
= \\
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
\end{gathered}
$$

By hand:

$$
\begin{gathered}
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
= \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t : t.split

Splitting pairs with simp/auto

How to replace

$$
\begin{gathered}
P(\text { let }(x, y)=t \text { in } u x y) \\
\text { or } \\
P(\text { case } t \text { of }(x, y) \Rightarrow u x y) \\
\text { by } \\
\forall x y \cdot t=(x, y) \longrightarrow P(u x y)
\end{gathered}
$$

Proof method: (simp split: prod.split)

Simp_Demo.thy

Chapter 3

Case Study: Binary Search Trees

Preview: sets

Type: 'a set
Operations: $a \in A, A \cup B, \ldots$
Bounded quantification: $\forall a \in A . P$
Proof method auto knows (a little) about sets.

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)
datatype 'a tree $=$ Leaf \mid Node ('a tree) 'a ('a tree)
Abbreviations:

$$
\begin{aligned}
\rangle & \equiv \text { Leaf } \\
\langle l, a, r\rangle & \equiv \text { Node l a r }
\end{aligned}
$$

The (binary) tree library

Size $=$ number of nodes:
size $::$ 'a tree \Rightarrow nat
size $\rangle=0$
size $\langle l, \ldots, r\rangle=$ size $l+$ size $r+1$
Height:
height $::$ 'a tree \Rightarrow nat
height $\rangle=0$
height $\langle l, \ldots, r\rangle=\max ($ height $l)($ height $r)+1$

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree \Rightarrow 'a set
set_tree $\rangle=\{ \}$
set_tree $\langle l, a, r\rangle=$ set_tree $l \cup\{a\} \cup$ set_tree r
Inorder listing:
inorder :: 'a tree $\Rightarrow{ }^{\prime}$ a list
inorder $\rangle=[]$
inorder $\langle l, x, r\rangle=$ inorder $l @[x]$ @ inorder r

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree \Rightarrow bool
bst $\rangle=$ True
$b s t\langle l, a, r\rangle=$
$((\forall x \in$ set_tree l. $x<a) \wedge$
$(\forall x \in$ set_tree r. $a<x) \wedge$ bst $l \wedge$ bst $r)$
For any type ' a ?

Isabelle's type classes

A type class is defined by

- a set of required functions (the interface)
- and a set of axioms about those functions

Example: class linorder: linear orders with $\leq,<$
A type belongs to some class if

- the interface functions are defined on that type
- and satisfy the axioms of the class (proof needed!)

Notation: $\tau:: C$ means type τ belongs to class C
Example: bst :: ('a :: linorder) tree \Rightarrow bool
$\Longrightarrow ' a$ must be a linear order!

Case study

BST_Demo.thy

This was easy!

Because we chose easy problems.
Difficult problems need more than induction+auto.

We need more automation and a more expressive proof language

Chapter 4

Logic and Proof Beyond Equality

(5) Logical Formulas

(6) Proof Automation

(7) Single Step Proofs

(5) Logical Formulas

(6) Proof Automation

(7) Single Step Proofs

Syntax (in decreasing precedence):

$$
\begin{array}{rl|l|l}
\text { form }::=(\text { form }) & \text { term }=\text { term } & \neg \text { form } \\
& \mid \text { form } \wedge \text { form } & \text { form } \vee \text { form } & \text { form } \longrightarrow \text { form } \\
& \forall x . \text { form } & \exists x . \text { form } &
\end{array}
$$

Examples:

$$
\begin{aligned}
\neg A \wedge B \vee C & \equiv((\neg A) \wedge B) \vee C \\
s=t \wedge C & \equiv(s=t) \wedge C \\
A \wedge B=B \wedge A & \equiv A \wedge(B=B) \wedge A \\
\forall x \cdot P x \wedge Q x & \equiv \forall x \cdot(P x \wedge Q x)
\end{aligned}
$$

Input syntax: \longleftrightarrow (same precedence as \longrightarrow)

Variable binding convention:

$$
\forall x y . P x y \equiv \forall x . \forall y . P x y
$$

Similarly for \exists and λ.

Warning

Quantifiers have low precedence

 and need to be parenthesized (if in some context)$$
\text { ! } P \wedge \forall x \cdot Q x \rightsquigarrow P \wedge(\forall x . Q x) \text { ! }
$$

Mathematical symbols

and their ascii representations

\forall	\<forall>	ALL
\exists	$\backslash<$ exists>	EX
λ	\<lambda>	$\%$
\longrightarrow	$-->$	
\longleftrightarrow	$<->$	
Λ	M	$\&$
\vee	$\backslash /$	\mid
\neg	$\backslash<$ not>	\sim
\neq	\<noteq>	$\sim=$

Sets over type ' a

'a set

- $\left\}, \quad\left\{e_{1}, \ldots, e_{n}\right\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B,-A$
- $\{x . P\}$ where x is a variable

$$
\begin{array}{lll}
\in & \backslash<\text { in> } & : \\
\subseteq & \backslash<\text { subseteq> } & <= \\
\cup & \backslash<\text { union> } & \text { Un } \\
\cap & \backslash<\text { inter }> & \text { Int }
\end{array}
$$

(5) Logical Formulas

(6) Proof Automation

(7) Single Step Proofs

simp and auto

simp: rewriting and a bit of arithmetic auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete
- Extensible with new simp-rules

Exception: auto acts on all subgoals

fastforce

- rewriting, logic, sets, relations and a bit of arithmetic.
- incomplete but better than auto.
- Succeeds or fails
- Extensible with new simp-rules

blast

- A complete proof search procedure for FOL ...
- ... but (almost) without "="
- Covers logic, sets and relations
- Succeeds or fails
- Extensible with new deduction rules

Sledgehammer

Architecture:

Isabelle

Goal \& filtered library

$\downarrow \uparrow$ Proof external
ATPs 1

Characteristics:

- Sometimes it works,
- sometimes it doesn't.

> Do you feel lucky?
${ }^{1}$ Automatic Theorem Provers

by(proof-method)

\approx

apply(proof-method)
done

Auto_Proof_Demo.thy

(6 Proof Automation
Automating Arithmetic

Linear formulas

Only:

variables
numbers
number $*$ variable

$$
\begin{gathered}
+,- \\
=, \leq,< \\
\neg, \wedge, \vee, \longrightarrow, \longleftrightarrow
\end{gathered}
$$

Examples

Linear: $\quad 3 * x+5 * y \leq z \longrightarrow x<z$
Nonlinear: $x \leq x * x$

Extended linear formulas

Also allowed:
min, max
even, odd
t div $n, t \bmod n$ where n is a number
conversion functions
nat, floor, ceiling, abs

Automatic proof of arithmetic formulas
 by arith

Proof method arith tries to prove arithmetic formulas.

- Succeeds or fails
- Decision procedure for extended linear formulas
- Nonlinear subterms are viewed as (new) variables. Example: $x \leq x * x+f y$ is viewed as $x \leq u+v$

Automatic proof of arithmetic formulas

by (simp add: algebra_simps)

- The lemmas list algebra__simps helps to simplify arithmetic formulas
- It contains associativity, commutativity and distributivity of + and $*$.
- This may prove the formula, may make it simpler, or may make it unreadable.

Automatic proof of arithmetic formulas
 by (simp add: field_simps)

- The lemmas list field_simps extends algebra_simps by rules for /
- Can only cancel common terms in a quotient, e.g. $x * y /(x * z)$, if $x \neq 0$ can be proved.

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation $x{ }^{\wedge} n$ is defined by Suc-recursion on n.
Therefore $x^{\wedge} 2$ is not simplified by simp and auto.
Numerals can be converted into $S u c$-terms with rule numeral_eq_Suc

Example
simp add: numeral_eq_Suc rewrites x ^2 to $x * x$

Auto_Proof_Demo.thy

Arithmetic

(5) Logical Formulas

(6) Proof Automation

(7) Single Step Proofs

Step-by-step proofs can be necessary if automation fails and you have to explore where and why it failed by taking the goal apart.

What are these ?-variables?

After you have finished a proof, Isabelle turns all free variables V in the theorem into ? V.

Example: theorem conjI: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge ? Q$
These ?-variables can later be instantiated:

- By hand:

$$
\begin{aligned}
& \text { conjI[of "a=b" "False"] } \rightsquigarrow \\
& \llbracket a=b ; \text { False } \Longrightarrow a=b \wedge \text { False }
\end{aligned}
$$

- By unification: unifying ? $P \wedge ? Q$ with $a=b \wedge$ False sets ? P to $a=b$ and ? Q to False.

Rule application

Example: rule: $\llbracket ? P ; ? Q \rrbracket \Longrightarrow ? P \wedge ? Q$ subgoal: $1 . \ldots \Longrightarrow A \wedge B$
Result: $1 . \ldots \Longrightarrow A$
2. $\ldots \Longrightarrow B$

The general case: applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- Unify A and C
- Replace C with n new subgoals $A_{1} \ldots A_{n}$

$$
\begin{aligned}
& \text { apply(rule } x y z \text {) } \\
& \text { "Backchaining" }
\end{aligned}
$$

Typical backwards rules

$$
\begin{gathered}
\frac{? P \quad ? Q}{? P \wedge ? Q} \operatorname{conjI} \\
\frac{? P \Longrightarrow ? Q}{? P \longrightarrow ? Q} \mathrm{impI} \quad \frac{\bigwedge x \cdot ? P x}{\forall x \cdot ? P x} \text { allI } \\
\frac{? P \Longrightarrow ? Q \quad ? Q \Longrightarrow ? P}{? P=? Q} \mathrm{iffI}
\end{gathered}
$$

They are known as introduction rules because they introduce a particular connective.

Forward proof: OF

If r is a theorem $A \Longrightarrow B$
and s is a theorem that unifies with A then

$$
r\left[\begin{array}{lll}
O F & s
\end{array}\right]
$$

is the theorem obtained by proving A with s.
Example: theorem refl: ?t $=? t$

$$
\begin{aligned}
& \text { conjI[OF refl[of "a"]] } \\
& ? Q \Longrightarrow a=a \wedge ? Q
\end{aligned}
$$

The general case:
If r is a theorem $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ and $r_{1}, \ldots, r_{m}(m \leq n)$ are theorems then

$$
r\left[O F \quad r_{1} \ldots r_{m}\right]
$$

is the theorem obtained
by proving $A_{1} \ldots A_{m}$ with $r_{1} \ldots r_{m}$.
Example: theorem refl: ? $t=? t$

$$
\begin{gathered}
\text { conjI[OF refl[of "a"] refl[of "b"]] } \\
\rightsquigarrow \rightsquigarrow \\
a=a \wedge b=b
\end{gathered}
$$

From now on: ? mostly suppressed on slides

Single_Step_Demo.thy

\Longrightarrow is part of the Isabelle framework. It structures theorems and proof states: $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$
\longrightarrow is part of HOL and can occur inside the logical formulas A_{i} and A.

Phrase theorems like this $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ not like this $A_{1} \wedge \ldots \wedge A_{n} \longrightarrow A$

Chapter 5

Isar: A Language for Structured Proofs

8 Isar by example
(9) Proof patterns
(10) Streamlining Proofs
(11) Proof by Cases and Induction

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script $=$ assembly language program
Isar proof $=$ structured program with assertions

But: apply still useful for proof exploration

A typical Isar proof

proof

assume formula ${ }_{0}$
have formula ${ }_{1}$ by simp
:
have formula ${ }_{n}$ by blast show formula ${ }_{n+1}$ by ...
qed
proves formula ${ }_{0} \Longrightarrow$ formula $_{n+1}$

Isar core syntax

proof $=$ proof [method] step* qed
by method
method $=(\operatorname{simp} \ldots) \mid($ blast $\ldots) \mid($ induction $\ldots) \mid \ldots$
step $=$ fix variables
assume prop
[from fact ${ }^{+}$] (have \midshow) prop proof
prop $=$ [name:] "formula"
fact $=$ name $\mid \ldots$
(8) Isar by example

(9) Proof patterns

(10) Streamlining Proofs

(11) Proof by Cases and Induction

Example: Cantor's theorem

lemma $\neg \operatorname{surj}\left(f:: ' a \Rightarrow{ }^{\prime} a \operatorname{set}\right)$
proof default proof: assume surj, show False
assume a : surj f
from a have $b: \forall A . \exists a . A=f a$
by (simp add: surj_def)
from b have $c: \exists a$. $\{x . x \notin f x\}=f a$ by blast
from c show False by blast
qed

Isar_Demo.thy

Cantor and abbreviations

Abbreviations

this $=$ the previous proposition proved or assumed
 then $=$ from this
 thus $=$ then show
 hence $=$ then have

using and with

(have|show) prop using facts
$=$
from facts (have|show) prop

with facts

from facts this

Structured lemma statement

lemma

fixes $f::{ }^{\prime} a \Rightarrow$ ' a set
assumes s : surj f
shows False
proof - no automatic proof step
have $\exists a$. $\{x . x \notin f x\}=f a$ using s by (auto simp: surj_def)
thus False by blast
qed
Proves surj $f \Longrightarrow$ False
but surj f becomes local fact s in proof.

The essence of structured proofs

Assumptions and intermediate facts can be named and referred to explicitly and selectively

Structured lemma statements

fixes $x:: \tau_{1}$ and $y:: \tau_{2} \ldots$
assumes a : P and $b: Q \ldots$ shows R

- fixes and assumes sections optional
- shows optional if no fixes and assumes
(8) Isar by example
(9) Proof patterns
(10) Streamlining Proofs
(11) Proof by Cases and Induction

Case distinction

show R
proof cases
assume P
:
show $R\langle p r o o f\rangle$
next
assume $\neg P$
\vdots
show $R\langle$ proof \rangle
qed
have $P \vee Q\langle$ proof \rangle then show R
proof
assume P
show $R\langle$ proof \rangle
next
assume Q
show $R\langle$ proof \rangle
qed

Contradiction

show $\neg P$
proof
assume P
:
show False $\langle p r o o f\rangle$ qed
show P
proof (rule ccontr) assume $\neg P$
\vdots
show False $\langle p r o o f\rangle$ qed

show $P \longleftrightarrow Q$ proof assume P
$:$
show $Q\langle$ proof \rangle
next
assume Q
$:$
show $P\langle p r o o f\rangle$
qed

\forall and \exists introduction

show $\forall x . P(x)$
proof
fix x local fixed variable show $P(x)\langle p r o o f\rangle$
qed
show $\exists x . P(x)$
proof
:
show P (witness) \langle proof \rangle
qed

\exists elimination: obtain

have $\exists x . P(x)$
then obtain x where $p: P(x)$ by blast
: x fixed local variable
Works for one or more x

obtain example

lemma $\neg \operatorname{surj}\left(f:: ' a \Rightarrow{ }^{\prime} a \operatorname{set}\right)$
proof
assume surj f
hence $\exists a$. $\{x . x \notin f x\}=f a$ by (auto simp: surj_def)
then obtain a where $\{x . x \notin f x\}=f a$ by blast hence $a \notin f a \longleftrightarrow a \in f a$ by blast
thus False by blast
qed

Set equality and subset

show $A=B$
proof show $A \subseteq B\langle p r o o f\rangle$ next
show $B \subseteq A\langle p r o o f\rangle$ qed
show $A \subseteq B$
proof
fix x
assume $x \in A$
:
show $x \in B\langle$ proof \rangle
qed

Isar_Demo.thy

Exercise
(9) Proof patterns

Chains of (In)Equations

Chains of equations

Textbook proof

$$
\begin{array}{rlrl}
t_{1} & =t_{2} & & \text { 〈justification〉 } \\
& =t_{3} & & \text { 〈justification〉 } \\
\vdots & & \\
& =t_{n} & & \text { 〈justification〉 }
\end{array}
$$

In Isabelle：

$$
\begin{gathered}
\text { have } t_{1}=t_{2}\langle\text { proof }\rangle \\
\text { also have } \ldots=t_{3}\langle\text { proof }\rangle
\end{gathered}
$$

also have $\ldots=t_{n}\langle p r o o f\rangle$
finally show $t_{1}=t_{n}$ ．
＂．．．＂is literally three dots

Chains of equations and inequations

Instead of $=$ you may also use \leq and $<$.

Example

have $t_{1}<t_{2}\langle p r o o f\rangle$
also have $\ldots=t_{3}\langle p r o o f\rangle$
also have $\ldots \leq t_{n}\langle p r o o f\rangle$
finally show $t_{1}<t_{n}$.

How to interpret "..."

have $t_{1} \leq t_{2}\langle p r o o f\rangle$
also have $\ldots=t_{3}\langle p r o o f\rangle$
Here "..." is internally replaced by t_{2}
In general, if this is the formula $p t_{1} t_{2}$ where p is some constant, then "..." stands for t_{2}.

Isar_Demo.thy

Example \& Exercise

8 Isar by example

(9) Proof patterns

(10) Streamlining Proofs

(11) Proof by Cases and Induction
(10) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
Local lemmas

Example: pattern matching

show formula $a_{1} \longleftrightarrow$ formula $a_{2}($ is ? $L \longleftrightarrow ? R)$ proof
assume ? L
:
show ? $R\langle p r o o f\rangle$
next
assume ? R
$:$
show ?L $\langle p r o o f\rangle$
qed

?thesis

show formula (is?thesis)
proof -

\vdots

show ?thesis 〈proof〉
qed

Every show implicitly defines?thesis

let

Introducing local abbreviations in proofs:
let $? t=$ "some-big-term"
$:$
have "... ?t..."

Quoting facts by value

By name:
have $x 0$: " $x>0$ "...
:
from $x 0 \ldots$

By value:
have " $x>0$ "...
!
from ' $x>0{ }^{\text {' }} \ldots$
back quotes

Isar_Demo.thy

Pattern matching and quotations

(10) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development Local lemmas

Example

lemma

$\exists y s z s . x s=y s @ z s \wedge$
(length $y s=$ length $z s \vee$ length $y s=$ length $z s+1$) proof ???

Isar_Demo.thy

Top down proof development

When automation fails

Split proof up into smaller steps.
Or explore by apply:
have . . . using . . .
apply -
to make incoming facts part of proof state
apply auto apply ...

At the end:

- done
- Better: convert to structured proof

(10) Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
Local lemmas

Local lemmas

have B if name: $A_{1} \ldots A_{m}$ for $x_{1} \ldots x_{n}$ $\langle p r o o f\rangle$
proves $\llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B$
where all x_{i} have been replaced by ? x_{i}.

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):

$$
\wedge x_{1} \ldots x_{n} . \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow B
$$

How to prove each subgoal:
$\mathbf{f i x} x_{1} \ldots x_{n}$
assume $A_{1} \ldots A_{m}$
\vdots
show B
Separated by next

8 Isar by example

(9) Proof patterns

(10) Streamlining Proofs

(11) Proof by Cases and Induction

Isar_Induction_Demo.thy

Proof by cases

Datatype case analysis

datatype $t=C_{1} \vec{\tau}$

proof (cases "term")
case $\left(\begin{array}{llll}C_{1} & x_{1} & \ldots & x_{k}\end{array}\right)$
$\ldots x_{j} \ldots$
next
\vdots
qed
where case $\left(C_{i} x_{1} \ldots x_{k}\right) \equiv$
$\mathbf{f i x} x_{1} \ldots x_{k}$
assume $\underbrace{C_{i}:}_{\text {label }} \underbrace{\text { term }=\left(C_{i} x_{1} \ldots x_{k}\right)}_{\text {formula }}$

Isar_Induction_Demo.thy

Structural induction for nat

Structural induction for nat

show $P(n)$
proof (induction n)
case 0
引
show? case
next
case $(S u c n) \quad \equiv$ fix n assume $S u c: P(n)$
let ?case $=P$ (Suc n)
show ?case
qed

Structural induction with \Longrightarrow

show $A(n) \Longrightarrow P(n)$
proof (induction n)
case 0
:
show ?case
next
case (Suc n)
\vdots
:
show ?case
qed

$$
\begin{aligned}
\equiv & \text { assume } 0: A(0) \\
& \text { let ?case }=P(0)
\end{aligned}
$$

$$
\equiv \text { fix } n
$$

$$
\text { assume } S u c: \quad A(n) \Longrightarrow P(n)
$$

$$
A(S u c n)
$$

$$
\text { let ?case }=P(\text { Suc } n)
$$

Named assumptions

In a proof of

$$
A_{1} \Longrightarrow \ldots \Longrightarrow A_{n} \Longrightarrow B
$$

by structural induction:
In the context of
case C
we have
C.IH the induction hypotheses
C.prems the premises A_{i}

C C.IH + C.prems

A remark on style

- case (Suc n) ... show ?case is easy to write and maintain
- fix n assume formula . . . show formula ${ }^{\prime}$ is easier to read:
- all information is shown locally
- no contextual references (e.g. ?case)

Isar_Induction_Demo.thy

Computation induction

Computation induction

If function f is defined by fun with n equations:
proof(induction st t.. rule: f.induct)
Generates cases named $i=1 \ldots n$:
case ($i x y \quad \ldots$)

Isabelle/jEdit generates Isar template for you!

Computation induction

- i is a name, but not $i . I H$
- Needs double quotes: "i.IH"
- Indexing: $i(1)$ and " $i . I H$ " (1)
- If defining equations for f overlap:
\rightsquigarrow Isabelle instantiates overlapping equations \leadsto case names of the form " $i \quad j$ "

