Functional Data Structures

Exercise Sheet 2

Exercise 2.1 Fold function

The fold function is a very generic function, that can be used to express multiple other interesting functions over lists.

Have a look at Isabelle/HOL's standard function fold.
thm fold.simps
Write a function to compute the sum of the elements of a list. Define two versions, one direct recursive definition, and one using fold. Show that both are equal.

```
fun list_sum :: "nat list }=>\mathrm{ nat"
definition list_sum' ::"nat list }=>\mathrm{ nat"
```

To use your definition in a proof, you need to use the theorem list_sum __def explicitly.
lemma" list_sum $x s=$ list_sum' $x s "$

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.
datatype 'a ltree $=$
Define a function that returns the list of elements resulting from an in-order traversal of the tree.
fun inorder :: "' a ltree \Rightarrow 'a list"
In order to fold over the elements of a tree, we could use fold f (inorder $t) s$.
Define a function fold_ltree that is recursive on the structure of the tree, and that returns the same result as fold f (inorder t) s.
fun fold_ltree :: "(' $\left.a \Rightarrow^{\prime} s \Rightarrow{ }^{\prime} s\right) \Rightarrow^{\prime}$ a ltree $\Rightarrow{ }^{\prime} s \Rightarrow^{\prime} s$ "
lemma "fold $f($ inorder $t) s=$ fold_ltree $f t s "$

Define a function mirror that reverses the order of the leafs, i.e. that satisfies the following specification:
lemma"inorder $($ mirror $t)=\operatorname{rev}($ inorder $t) "$

Exercise 2.3 Shuffle Product

A shuffle of two lists, $x s$ and $y s$, is a list that contains exactly the elements of $x s$ and $y s$ s.t. every two elements $x \in x s$ (resp. ys) and $x^{\prime} \in x s$ (resp. ys) occur in the shuffle in the same order they do in $x s$ (resp. $y s$).
Define a function shuffles that returns a list of all shuffles of two given lists
fun shuffles ::"a list $\Rightarrow{ }^{\prime}$ 'a list $\Rightarrow{ }^{\prime}$ a list list"
Show that the length of any shuffle of two lists is the sum of the length of the original lists.
lemma" $z s \in \operatorname{set}($ shuffles $x s y s) \Longrightarrow$ length $z s=$ length $x s+$ length $y s "$

Homework 2.1 Distinct lists

Submission until Monday, 8 May, 23:59pm.
Define a predicate ldistinct to characterize distinct lists, i.e., lists whose elements are pairwise disjoint. Use the contains function from the last sheet (contained in the Defs).
fun ldistinct :: "' list \Rightarrow bool"
Show that a reversed list is distinct if and only if the original list is distinct.
lemma ldistinct_rev:"ldistinct $($ rev $x s)=$ ldistinct $x s "$

Homework 2.2 More on fold

Submission until Monday, 8 May, 23:59pm.
Isabelle's fold function implements a left-fold. Additionally, Isabelle also provides a right-fold foldr.
Use both functions to specify the length of a list, and show them correct.

```
thm fold.simps
thm foldr.simps
definition length fold :: "' a list => nat"
definition length_foldr :: "'a list }=>\mathrm{ nat"
```

lemma length_fold:"length fold $x s=$ length $x s "$
lemma length_foldr: "length_foldr $x s=$ length $x s "$

Homework 2.3 List Slices

Submission until Monday, 8 May, 23:59pm. Specify a function slice xs $s l$, that, for a list $x s=\left[x_{0}, \ldots, x_{n}\right]$ returns the slice starting at s with length l , i.e., $\left[x_{s}, \ldots, x_{s+l e n-1}\right]$.
If s or len is out of range, return a shorter (or the empty) list.
fun slice :: "' list \Rightarrow nat \Rightarrow nat \Rightarrow 'a list"
Hint: Use pattern matching instead of $i f$-expressions. For example, instead of writing f $x=($ if $x>0$ then \ldots else \ldots) you should define two equations $f 0=\ldots$ and f (Suc n) $=\ldots$.

Some test cases, which should all hold, i.e., yield True
value "slice $[0,1,2,3,4,5,6::$ int $] 23=[2,3,4]$ "
(In range)
value "slice $[0,1,2,3,4,5,6::$ int $] 210=[2,3,4,5,6]$ "
(Length out of range)
value "slice $[0,1,2,3,4,5,6::$ int $] 1010=[]$ "
(Start index out of range)
Show that concatenation of two adjacent slices can be expressed as a single slice:
lemma slice_append: "slice xs sl1 @ slice xs ($s+l 1$) l2 = slice xs s $(l 1+l 2)$ "
Show that a slice of a distinct list is distinct.
lemma ldistinct_slice: "ldistinct $x s \Longrightarrow$ ldistinct (slice xs sl)"

