Functional Data Structures

Exercise Sheet 2

Exercise 2.1 Fold function

The fold function is a very generic function, that can be used to express multiple other interesting functions over lists.

Have a look at Isabelle/HOL's standard function fold.

 $\mathbf{thm}~\textit{fold.simps}$

Write a function to compute the sum of the elements of a list. Define two versions, one direct recursive definition, and one using fold. Show that both are equal.

fun $list_sum :: "nat list \Rightarrow nat"$ **definition** $<math>list_sum' :: "nat list \Rightarrow nat"$

To use your definition in a proof, you need to use the theorem *list_sum'_def* explicitly.

lemma "list_sum $xs = list_sum' xs$ "

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.

datatype 'a ltree =

Define a function that returns the list of elements resulting from an in-order traversal of the tree.

fun inorder :: "'a ltree \Rightarrow 'a list"

In order to fold over the elements of a tree, we could use fold f (inorder t) s.

Define a function *fold_ltree* that is recursive on the structure of the tree, and that returns the same result as *fold* f (*inorder* t) s.

fun fold_ltree :: "(' $a \Rightarrow 's \Rightarrow 's$) \Rightarrow 'a ltree \Rightarrow 's \Rightarrow 's" lemma "fold f (inorder t) s = fold_ltree f t s" Define a function *mirror* that reverses the order of the leafs, i.e. that satisfies the following specification:

lemma "inorder (mirror t) = rev (inorder t)"

Exercise 2.3 Shuffle Product

A shuffle of two lists, xs and ys, is a list that contains exactly the elements of xs and ys s.t. every two elements $x \in xs$ (resp. ys) and $x' \in xs$ (resp. ys) occur in the shuffle in the same order they do in xs (resp. ys).

Define a function *shuffles* that returns a list of all shuffles of two given lists

fun shuffles :: "'a list \Rightarrow 'a list \Rightarrow 'a list list"

Show that the length of any shuffle of two lists is the sum of the length of the original lists.

lemma " $zs \in set$ (shuffles xs ys) \implies length zs = length xs + length ys"

Homework 2.1 Distinct lists

Submission until Monday, 8 May, 23:59pm.

Define a predicate *ldistinct* to characterize *distinct* lists, i.e., lists whose elements are pairwise disjoint. Use the contains function from the last sheet (contained in the Defs). fun *ldistinct* :: "'a list \Rightarrow bool"

Show that a reversed list is distinct if and only if the original list is distinct.

lemma $ldistinct_rev$: "ldistinct (rev xs) = ldistinct xs"

Homework 2.2 More on fold

Submission until Monday, 8 May, 23:59pm.

Isabelle's fold function implements a left-fold. Additionally, Isabelle also provides a right-fold *foldr*.

Use both functions to specify the length of a list, and show them correct.

thm fold.simps thm foldr.simps

definition $length_fold :: "'a \ list \Rightarrow nat"$ **definition** $length_fold :: "'a \ list \Rightarrow nat"$ **lemma** $length_fold$: " $length_fold$ xs = length xs" **lemma** $length_foldr$: " $length_foldr$ xs = length xs"

Homework 2.3 List Slices

Submission until Monday, 8 May, 23:59pm. Specify a function slice $xs \ s \ l$, that, for a list $xs = [x_0, ..., x_n]$ returns the slice starting at s with length l, i.e., $[x_s, ..., x_{s+len-1}]$. If s or len is out of range, return a shorter (or the empty) list.

fun slice :: "'a list \Rightarrow nat \Rightarrow nat \Rightarrow 'a list"

Hint: Use pattern matching instead of *if*-expressions. For example, instead of writing $f x = (if x > 0 \text{ then } \dots \text{ else } \dots)$ you should define two equations $f 0 = \dots$ and $f (Suc n) = \dots$

Some test cases, which should all hold, i.e., yield True

value "slice [0, 1, 2, 3, 4, 5, 6::int] 2 3 = [2, 3, 4]"

(In range)

value "slice $[0,1,2,3,4,5,6::int] \ 2 \ 10 = [2,3,4,5,6]$ "

(Length out of range)

value "slice [0, 1, 2, 3, 4, 5, 6::int] 10 10 = []"

(Start index out of range)

Show that concatenation of two adjacent slices can be expressed as a single slice:

lemma slice_append: "slice xs s l1 @ slice xs (s+l1) l2 = slice xs s (l1+l2)"

Show that a slice of a distinct list is distinct.

lemma *ldistinct_slice:* "*ldistinct* $xs \implies$ *ldistinct* (*slice* $xs \ s \ l$)"