
Technische Universität München SS 23
Institut für Informatik 9. 5. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 3

Exercise 3.1 Membership Test with Less Comparisons

In the worst case, the isin function performs two comparisons per node. In this exercise,
we want to reduce this to one comparison per node. The idea is that we never test for
>, but always goes right if not <. However, one remembers the value where one should
have tested for =, and performs the comparison when a leaf is reached:
fun isin2 :: “(′a::linorder) tree ⇒ ′a option ⇒ ′a ⇒ bool”

The second parameter of the function should store the value for the deferred comparison.
Show that your function is correct.
Hint: Auxiliary lemma for isin2 t (Some y) x!

lemma isin2_None:
“bst t =⇒ isin2 t None x = isin t x”

Exercise 3.2 Height-Preserving In-Order Join

Write a function that joins two binary trees such that

• The in-order traversal of the new tree is the concatenation of the in-order traversals
of the original trees

• The new tree is at most one higher than the highest original tree
Hint: Once you got the function right, proofs are easy!

fun join :: “ ′a tree ⇒ ′a tree ⇒ ′a tree”

lemma join_inorder [simp]: “inorder(join t1 t2) = inorder t1 @ inorder t2”
lemma “height(join t1 t2) ≤ max (height t1) (height t2) + 1”

1

Exercise 3.3 Implement Delete

Implement delete using the join function from last exercise.
Note: At this point, we are not interested in the implementation details of join any more,
but just in its properties, i.e. what it does to trees. Thus, as first step, we declare its
equations to not being automatically unfolded.
declare join.simps[simp del]

Both set_tree and bst can be expressed by the inorder traversal over trees:
thm set_inorder [symmetric] bst_iff_sorted_wrt_less

Note that set_inorder is declared as simp. Be careful not to have both directions of the
lemma in the simpset at the same time, otherwise the simplifier is likely to loop.
You can use simp del: set_inorder add: set_inorder [symmetric] to temporarily remove
the first direction of the lemma from the simpset.
Alternatively, you can write declare set_inorder [simp del] to remove it once and forall.

For bst, you might want to delete the bst_wrt simps, and use the append lemma:
thm bst_wrt.simps
thm sorted_wrt_append

Show that join preserves the set of entries
lemma join_set[simp]: “set_tree (join t1 t2) = set_tree t1 ∪ set_tree t2”

Show that joining the left and right child of a BST is again a BST:
lemma bst_pres[simp]: “bst (Node l (x::_::linorder) r) =⇒ bst (join l r)”

Implement a delete function using the idea contained in the lemmas above.
fun delete :: “ ′a::linorder ⇒ ′a tree ⇒ ′a tree”

Prove it correct! Note: You’ll need the first lemma to prove the second one!
lemma bst_set_delete[simp]: “bst t =⇒ set_tree (delete x t) = (set_tree t) − {x}”

lemma bst_del_pres: “bst t =⇒ bst (delete x t)”

Homework 3.1 Rotating Chains

Submission until Monday, 15 May, 23:59pm.
A right-linear chain is a binary tree that only descends to the right, i.e., all the values
form a list along the right spine. Define a recursive function to characterize such trees:

2

fun rlc :: “ ′a tree ⇒ bool”

Some examples:
value “rlc 〈〈〉,1::nat,〈〈〉,2,〈〈〉,3,〈〉〉〉〉”
value “¬rlc 〈〈〉,1::nat,〈〈〈〉,3,〈〉〉,2,〈〉〉〉”

The task is now to transform any binary search tree into a right-linear chain, using only
tree rotations. The given rotate function rotates a single node.
Show its correctness:
lemma bst_rotate[simp]: “bst t =⇒ bst (rotate t)”

lemma set_rotate[simp]: “set_tree (rotate t) = set_tree t”

Now, define a function to traverse a tree and perform the first available rotation:
fun rotate1 :: “ ′a tree ⇒ ′a tree”

We want to prove that at most size t rotations are necessary for the transformation.
To prove that, we need to define a potential function that decreases in every rotation,
and reaches zero for a right-linear chain:
fun pot :: “ ′a tree ⇒ nat”

Prove these two properties:
lemma pot_0: “rlc t ←→ pot t = 0”
lemma pot_rotate_n[simp]: “pot ((rotate1 ^^ n) t) = pot t − n”

Put everything together, and show the final statement:

theorem rlc_rotate: “∃n ≤ size t. rlc ((rotate1 ^^ n) t)”

Hint: Use straightforward definitions and check if they are correct first. Create auxiliary
lemmas where appropriate. All proofs should only take a few lines.

3

