
Technische Universität München SS 23
Institut für Informatik 16. 5. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 4

Exercise 4.1 List Elements in Interval

Write a function to in-order list all elements of a BST in a given interval. I.e. in_range
t u v shall list all elements x with u≤x≤v. Write a recursive function that does not
descend into subtrees that definitely contain no elements in the given range.
fun in_range :: “ ′a::linorder tree ⇒ ′a ⇒ ′a ⇒ ′a list”

Show that you list the right set of elements
lemma “bst t =⇒ set (in_range t u v) = {x∈set_tree t. u≤x ∧ x≤v}”

Show that your list is actually in-order
lemma “bst t =⇒ in_range t u v = filter (λx. u≤x ∧ x≤v) (inorder t)”

Exercise 4.2 Fist Isar Steps

Using Isar, show the following theorem over natural numbers:
theorem

assumes “x ≥ (1 :: nat)”
shows “(x + x^2)^2 ≤ 4 ∗ x^4”

Hint: When phrasing intermediate goals, check your types. Use sledgehammer to fill in
simple proof steps.

Exercise 4.3 Enumeration of Trees

Write a function that generates the set of all trees up to a given height. Show that only
trees up to the specified height are contained.
fun enum :: “nat ⇒ unit tree set”
lemma enum_sound: “t ∈ enum n =⇒ height t ≤ n”

1



(Time permitting) Show the other direction, i.e. that all trees of the specified height are
contained.
lemma enum_complete: “height t ≤ n =⇒ t ∈ enum n”

lemma enum_correct: “enum h = {t. height t ≤ h}”
by (auto simp: enum_complete enum_sound)

Homework 4 Max Annotated Trees

Submission until Monday, May 22, 23:59pm.
In this homework, we will develop an augmented binary search tree that stores the
maximum element in the tree at thee root. With this auxiliary information, it is easier
to implement queres such as membership:
datatype ′a mtree = Leaf | Node ( ′a mtree) ′a ′a ( ′a mtree)

Define a function to return the set of elements in such a tree
fun set_mtree :: “ ′a mtree ⇒ ′a set”

Define a function that charcterises the invariant on the tree: the search tree property
and the correct maximum node labels. Note: you do not have to use the function Max.
fun mbst :: “ ′a::linorder mtree ⇒ bool”

To confirm that the invariant characterises what it is supposed to, define a function
which computes the maximum value in an ordered tree. This function has to recurse on
the given tree. You can assume the tree is properly ordered. Note that in addition to
the linorder, we also require that the elements of the tree have a 0 element.
fun max_val :: “ ′a::{linorder ,zero} mtree ⇒ ′a”

Show that this function returns the label of the root of a given tree, if the tree is mbst.
lemma mbst_max: “mbst (Node l m a r) =⇒ max_val (Node l m a r) = m”

Define the insert function for this tree. Note: it has to correctly update the node with
the correct maximum labels (but must not use the max_val function, as that is only for
the specification).
fun mins :: “ ′a::linorder ⇒ ′a mtree ⇒ ′a mtree”

Now show that mins preserves the invariant. Hint: you will need a lemma showing that
mins actually inserts the element in the set of elements in the tree.

lemma mins_mbst: “mbst t =⇒ mbst (mins x t)”

2



Define the membership query function and show it correct. Note: the function has to
exploit the augmented maximum value!
fun misin :: “ ′a::linorder ⇒ ′a mtree ⇒ bool”

lemma misin_set: “mbst t =⇒ misin x t ←→ x∈set_mtree t”

Specify a function that lists the elements within a given range in a given augmented
tree and show that it lists the right elements. Again, the function must exploit the
augmented maximum values.
fun mtree_in_range :: “ ′a::linorder mtree ⇒ ′a ⇒ ′a ⇒ ′a list”

Show that the function lists the right set of elements
lemma mbst_range: “mbst t =⇒ set (mtree_in_range t u v) = {x∈set_mtree t. u≤x ∧ x≤v}”

3


