Functional Data Structures

Exercise Sheet 5

Solve this exercise sheet without sledgehammer proofs i.e., smt, metis, meson, or moura are forbidden!

Exercise 5.1 Bounding power-of-two by factorial

Prove that, for all natural numbers $n>3$, we have $2^{n}<n$!. We have already prepared the proof skeleton for you.

```
lemma exp_fact_estimate: " \(n>3 \Longrightarrow(2:: n a t)\) ^n \(<\) fact \(n "\)
proof (induction \(n\) )
    case 0 then show ?case by auto
next
    case (Suc n)
    show ?case
```

Fill in a proof here. Hint: Start with a case distinction whether $n>3$ or $n=3$.

Warning! Make sure that your numerals have the right type, otherwise proofs will not work! To check the type of a numeral, hover the mouse over it with pressed CTRL (Mac: CMD) key. Example:
lemma " 2 へ $n \leq 2$ 2-Suc n "
apply auto oops
Leaves the subgoal $2^{\wedge} n \leq 2 * 2{ }^{\wedge} n$
You will find out that the numeral 2 has type ' a, for which you do not have any ordering laws. So you have to manually restrict the numeral's type to, e.g., nat.
lemma"(2::nat) $n \leq 2 \uparrow S u c n "$ by simp

Exercise 5.2 Sum Squared is Sum of Cubes

- Define a recursive function sumto $f n=\sum_{i=0 \ldots n} f(i)$.
- Show that $\left(\sum_{i=0 \ldots n} i\right)^{2}=\sum_{i=0 \ldots n} i^{3}$.

```
fun sumto :: "(nat => nat) => nat => nat"
```

You may need the following lemma:

```
lemma sum_of_naturals:"2 * sumto (\lambdax.x) n=n*(n+1)"
lemma "sumto ( }\lambdax.x)n^^2= sumto ( \lambdax. x^3) n"
proof (induct n)
    case 0 show ?case by simp
next
    case (Suc n)
    assume IH:"(sumto (\lambdax. x) n) 2}= sumto (\lambdax. x^ `) n"
    note [simp] = algebra_simps - Extend the simpset only in this block
    show"(sumto (\lambdax. x) (Suc n))}\mp@subsup{)}{}{2}=\mathrm{ sumto ( }\lambdax.x``) (Suc n)"
```


Exercise 5.3 Pretty Printing of Binary Trees

Binary trees can be uniquely pretty-printed by emitting a symbol L for a leaf, and a symbol N for a node. Each N is followed by the pretty-prints of the left and right tree. No additional brackets are required!
datatype 'a tchar $=L \mid N^{\prime} a$
fun pretty :: "' a tree \Rightarrow ' a tchar list"
 L] "

Show that pretty-printing is actually unique, i.e. no two different trees are pretty-printed the same way. Hint: Auxiliary lemma.
lemma pretty_unique: "pretty $t=$ pretty $t^{\prime} \Longrightarrow t=t^{\prime}$ "

Define a function that checks whether two binary trees have the same structure. The values at the nodes may differ.
fun bin_tree2 :: "' a tree \Rightarrow 'b tree \Rightarrow bool"
While this function itself is not very useful, the induction principle generated by the function package is! It allows simultaneous induction over two trees:
print__statement bin_tree2.induct
Try to prove the above lemma with that new induction principle.

Homework 5.1 Identity for a Summation

Submission until Monday, 29 May, 23:59pm.
The identity $\sum_{i=1 \ldots n} i 2^{i}=n 2^{n+1}-\left(2^{n+1}-2\right)$ holds for summations. Prove that identity for the function sumto from the tutorial

lemma sum ident:

```
    "sumto ( \(\lambda i\). \(i *\) 2 ^ \(\left.^{\text {i }}\right) n=n *\) 2 \(^{\wedge}(n+1)-\left(\right.\) 2 ^ \(^{(n+1)-2) " ~}\)
```

Your proof should be by induction on n. In the induction step, show the derivation of the equality by a chain of equations. For readability, each step in that chain should be very simple: it must use simp or auto with at most one deleted fact and one additional fact (i.e. global lemma, assumption, IH) or algebra_simps. Hints:

- Try to come up with the chain of equations on paper before formalising it in Isabelle/HOL.
- The lemma add_diff_assoc2 might be useful for the proof. One way to use that lemma is by proving its side condition before you start the chain of equalities and then using that and then adding add_diff_assoc2[OF side] to the simp set.
- Sometimes it is useful to get controlled behaviour of simp by having one lemma, say lem, as the only rule to be used by simp. This can be done by simp only: lem.

Homework 5.2 Estimate for Number of Leafs

Submission until Monday, 29 May, 23:59pm. Note: Use Isar, proofs using metis, smt, meson, or moura (as generated by sledgehammer) are forbidden!
Define a function to count the number of leafs in a binary tree:
fun num_leafs :: "'a tree \Rightarrow nat"
Start by showing the following auxiliary lemma:

```
lemma auxl:
    assumes IHl:"num_leafs l\leq 2 ^height l"
    and IHr:"num_leafs r\leq2 ` height r"
    and lr: "height l \leq height r"
shows "num_leafs(Node l x r) \leq 2 ^height(Node l x r)"
```

Also show the symmetric statement. Hint: Copy-paste-adjust!

```
lemma auxr:
    assumes \(I H l\) : "num_leafs \(l \leq 2^{\wedge}\) height \(l "\)
        and \(I H r\) : "num_leafs \(r \leq \mathcal{Z}^{\text {へ height } r " ~}\)
        and \(r l\) : " \(\neg\) height \(l \leq\) height \(r\) "
```


Finally, show that we can estimate the number of leafs in a tree as follows:
theorem num_leafs_est: "num_leafs $t \leq 2$ 2height t " proof (induction t)
case Leaf show ?case by auto

next

case (Node l x r)
assume IHl: "num_leafs $l \leq 2^{\wedge}$ height l "
assume $I H r$: "num_leafs $r \leq 2^{\wedge}$ height r "
show"num_leafs $\langle l, x, r\rangle \leq 2^{\wedge}$ height $\langle l, x, r\rangle$ "
Fill in your proof here

