
Technische Universität München SS 23
Institut für Informatik 13. 6. 2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Functional Data Structures
Exercise Sheet 8

Exercise 8.1 Joining 2-3-Trees

Implement and prove correct a function to combine two 2-3-trees of equal height, such
that the inorder traversal of the resulting tree is the concatenation of the inorder traversal
of the arguments, and the height of the result is either the height of the arguments, or
has increased by one. Use ′a upI to return the result, similar to Tree23_Set.ins:
fun join :: “ ′a tree23 ⇒ ′a tree23 ⇒ ′a upI”

lemma join_inorder :
fixes t1 t2 :: “ ′a tree23”
assumes “height t1 = height t2”
assumes “complete t1” “complete t2”
shows “inorder (treeI (join t1 t2)) = (inorder t1 @ inorder t2)”

lemma join_complete:
fixes t1 t2 :: “ ′a tree23”
assumes “height t1 = height t2”
assumes “complete t1” “complete t2”
shows “complete (treeI (join t1 t2)) ∧ hI (join t1 t2) = height t2”

Hints:

• Try to use automatic case splitting (auto split: . . .) instead of explicit case splitting
via Isar (There will be dozens of cases).

• To find bugs in your join function, or isolate the case where your automatic proof
does not (yet) work, use Isar to perform the induction proof case by case.

Exercise 8.2 Bounding the Size of 2-3-Trees

Show that for complete 2-3-trees, we have:

log3 (s(t) + 1) ≤ h(t) ≤ log2 (s(t) + 1)

1

Hint: It helps to first raise the two sides of the inequation to the 2nd/3rd power. Use
sledgehammer and find-theorems to search for the appropriate lemmas.
lemma height_bound_upper : “complete t =⇒ height t ≤ log 2 (size t + 1)”

lemma height_bound_lower :
assumes “complete t”

shows “log 3 (size t + 1) ≤ height t”

Homework 8.1 Bit-Vectors

Submission until Monday, June 19, 23:59pm.
A bit-vector is a list of Booleans that encodes a finite set of natural numbers as follows:
A number i is in the set, if i is less than the length of the list and the ith element of the
list is true. That means that the abstraction function is:
bv_set l = {i. i < length l ∧ l ! i}
Define the other operations of the Set interface (including delete) and interpret the
locale!
Hints:

• Compose existing functions rather than defining your own. Elegant definitions
won’t even need a single case distinction!

• The syntax to update the n-th element of a list is: xs[n := x].
• To get a clickable template for your interpretation proof, start it with:

proof (standard,goal_cases).

Homework 8.2 Bounding the size of 2-3-Trees

Submission until Monday, June 19, 23:59pm.
Show that a 2-3-tree has only 3 nodes, if and only if its number of leafs is 3 to the power
of its height. One direction is quite easy, the other one requires more proving.
Hint: What is the general relation between size1 and height?

theorem complete_3_tree_height: “complete t =⇒ is_3_tree t ←→ size1 t = 3^height t”

2

