
Technische Universität München SS 24
Institut für Informatik 19. 4. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and
write the the following three lines at the top of this file.

theory Ex01
imports Main
begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:
“2 + (2::nat)” “(2::nat) ∗ (5 + 3)” “(3::nat) ∗ 4 − 2 ∗ (7 + 1)”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.
fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation
between count and length, the function returning the length of a list.
theorem “count xs x ≤ length xs”

1



Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.
fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:
value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:
lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.
fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:
value “reverse [a, b, c]”

lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.
theorem “reverse (reverse xs) = xs”

2



Homework Registration

Submissions are handled via https://do.proof.in.tum.de. Register an account in the
system and send the tutor an e-mail. Click here and fill in your details. Please don’t
put additional text in this mail.

Homework Submission

• Use the template from the competition ”FDS 2024”. Do not change the existing
code of the template (except for the sorrys and undefineds), only add your so-
lution (you can add other definitions, lemmas, etc. as well, but do not name any
lemma test).

• Submit your solution following the instructions on the website.
• The system will check that your solution can be loaded in Isabelle2024-RC1 with-

out any errors.
• You can upload multiple times; the last upload before the deadline is the one that

will be graded.
• The submission system will give you feedback which checks were passed. Some

checks are listed multiple times for weighting.

Homework Guidelines

• Only submissions with status ”Passed” will be graded. If you have any prob-
lems uploading, or if the submission seems to be rejected for reasons you cannot
understand, please contact the tutor before the deadline. Make sure that the
submission (and check file) runs through locally without errors.

• Partial credits may be given for:
– nearly correct definitions
– finished intermediate lemmas
– incomplete proofs, if they do not contain sorry and missing steps are extracted

into succinct lemmas (which are assumed by using sorry).
• To claim partial credit (e.g., if you made progress in a proof but didn’t finish it),

Mark it as (*incomplete*).
• We will be using a clone detection tool to compare solutions so please do not add

any personal or identifying information.

General Hints

• Define the functions as simply as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters – this will complicate
the proofs!

• All proofs should be straightforward, and take only a few lines.

3

https://do.proof.in.tum.de
mailto:rosskops@in.tum.de?subject=%5BFDS%202024%5D%20homework%20registration&body=username%2Cmatrikelnr%2Cfirstname%2Clastname


Homework 1.1 Sum of odd numbers

Submission until Thursday, 25 April, 23:59pm.

Define a recursive function oddsum which computes the sum of the first n numbers. Your
definition should have equations for oddsum 0 and oddsum (Suc n).
fun oddsum :: “nat ⇒ nat”

For example, the following should evaluate to True:
value “oddsum 3 = 5 + 3 + 1 + 0”
value “oddsum 7 = 49”
value “oddsum 1 = 1”

You might want to test your implementation on more inputs using the value command.
Then prove that the square of a natural number n can be computed as the sum of the
first n odd numbers:
lemma oddsum_is_square: “oddsum n = n ∗ n”

Finally prove the following property of oddsum:
lemma oddsum_mult: “oddsum (n∗m) = oddsum n ∗ oddsum m”

Homework 1.2 Spreading elements

Submission until Thursday, 25 April, 23:59pm.

Define a function spread that spreads an element among a list. This is, spread a xs adds
the element a behind every element of xs.
fun spread :: “ ′a ⇒ ′a list ⇒ ′a list”

The following evaluates to true, for instance:
value “spread (0::nat) [1,2,3] = [1,0,2,0,3,0]”

Prove that spreading an element amongst a list xs adds exactly length xs copies of the
element to the list.
lemma count_spread: “count (spread a xs) a = count xs a + length xs”

Finally, prove the following lemma connecting reverse, snoc and spread:
lemma spread_reverse_snoc: “snoc (reverse (spread a xs)) a = a # spread a (reverse xs)”

Hint: You may need an auxiliary lemma about spread and snoc.

4


