Functional Data Structures

Exercise Sheet 2

Exercise 2.1 Fold function

The fold function is a very generic function, that can be used to express multiple other interesting functions over lists.

Have a look at Isabelle/HOL's standard function fold.

thm fold.simps

Write a function to compute the sum of the elements of a list. Define two versions, one direct recursive definition, and one using fold. Show that both are equal.

fun $list_sum :: "nat <math>list \Rightarrow nat"$ **definition** $list_sum' :: "nat <math>list \Rightarrow nat"$

To use your definition in a proof, you need to use the theorem *list_sum'_def* explicitly.

lemma "list_sum $xs = list_sum' xs$ "

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.

datatype 'a ltree =

Define a function that returns the list of elements resulting from an in-order traversal of the tree.

fun inorder :: "'a ltree \Rightarrow 'a list"

In order to fold over the elements of a tree, we could use fold f (inorder t) s.

Define a function $fold_ltree$ that is recursive on the structure of the tree, and that returns the same result as fold f (inorder t) s.

fun fold_ltree :: "(' $a \Rightarrow 's \Rightarrow 's$) \Rightarrow 'a ltree \Rightarrow 's \Rightarrow 's" lemma "fold f (inorder t) s = fold_ltree f t s" Define a function *mirror* that reverses the order of the leafs, i.e. that satisfies the following specification:

lemma "inorder (mirror t) = rev (inorder t)"

Exercise 2.3 Shuffle Product

A shuffle of two lists, xs and ys, is a list that contains exactly the elements of xs and ys s.t. every two elements $x \in xs$ (resp. ys) and $x' \in xs$ (resp. ys) occur in the shuffle in the same order they do in xs (resp. ys).

Define a function *shuffles* that returns a list of all shuffles of two given lists

fun shuffles :: "'a list \Rightarrow 'a list \Rightarrow 'a list list"

Show that the length of any shuffle of two lists is the sum of the length of the original lists.

lemma " $zs \in set$ (shuffles $xs \ ys$) \implies length zs = length xs + length ys"

Homework 2.1 Association Lists

Submission until Thursday, May 02, 23:59pm.

An association list is a list of pairs. An entry (k, v) means that key k is associated to value v.

For an association list xs, the *collect* k xs operation returns a list of all values associated to key k, in the order stored in the list. Specify the function collect by a set of recursion equations:

fun collect :: "' $a \Rightarrow$ (' $a \times$ 'b) list \Rightarrow 'b list"

Test cases

 $\begin{array}{l} \textbf{definition } ctest :: ``(int * int) \ list" \ \textbf{where } ``ctest \equiv [\\ (2,3), (2,5), (2,7), (2,9), \\ (3,2), (3,4), (3,5), (3,7), (3,8), \\ (4,3), (4,5), (4,7), (4,9), \\ (5,2), (5,3), (5,4), (5,6), (5,7), (5,8), (5,9), \\ (6,5), (6,7), \\ (7,2), (7,3), (7,4), (7,5), (7,6), (7,8), (7,9), \\ (8,3), (8,5), (8,7), (8,9), \\ (9,2), (9,4), (9,5), (9,7), (9,8) \\]" \end{array}$

value "collect 3 ctest = [2,4,5,7,8]" **value** "collect 1 ctest = []" An experienced functional programmer might also write this function as

map snd (filter (λkv . fst kv = x) ys)

Show that this specifies the same function:

lemma collect_alt: "collect x ys = map snd (filter (λkv . fst kv = x) ys)"

When the lists get bigger, efficiency might be a concern. To avoid stack overflows, you might want to specify a tail-recursive version of *collect*. The first parameter is the accumulator, that accumulates the elements to be returned, and is returned at the end. Note: To avoid appending to the accumulator, we accumulate the elements in reverse order, and reverse the accumulator at the end.

Complete the second equation!

fun collect_tr :: "'a list \Rightarrow 'b \Rightarrow ('b \times 'a) list \Rightarrow 'a list" where "collect_tr acc x [] = rev acc"

Show correctness of your tail-recursive version. Hint: Generalization!

lemma collect_tr_collect: "collect_tr [] x ys = collect x ys"

Homework 2.2 Perfectly Balanced Trees

Submission until Thursday, May 02, 23:59pm.

Recall the tree datatype 'a *ltree* from the tutorial. Define functions to return the height (A leaf has height 0) and the number of leafs:

fun *lheight* :: "'a *ltree* \Rightarrow *nat*" **fun** *num_leafs* :: "'a *ltree* \Rightarrow *nat*"

A tree is perfectly balanced iff, for each node, the left and right subtree have the same height. Specify a function to check that a tree is perfectly balanced.

fun perfect :: "'a ltree \Rightarrow bool"

Show that, for a perfectly balanced tree with height h and number of leafs l, we have $l = 2^{h}$:

lemma perfect_num_leafs_height: "perfect $t \implies num_leafs \ t = 2$ "lheight t"

Homework 2.3 Shuffles

Submission until Thursday, May 02, 23:59pm.

In the tutorial you have defined the function *shuffles*. Show that the elements in a shuffle are exactly the elements of the input lists.

lemma set_shuffles: " $zs \in set (shuffles xs ys) \Longrightarrow set zs = set xs \cup set ys$ "