
Technische Universität München SS 24
Institut für Informatik 26. 4. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 2

Exercise 2.1 Fold function

The fold function is a very generic function, that can be used to express multiple other
interesting functions over lists.

Have a look at Isabelle/HOL’s standard function fold.
thm fold.simps

Write a function to compute the sum of the elements of a list. Define two versions, one
direct recursive definition, and one using fold. Show that both are equal.
fun list_sum :: “nat list ⇒ nat”
definition list_sum ′ :: “nat list ⇒ nat”

To use your definition in a proof, you need to use the theorem list_sum ′_def explicitly.

lemma “list_sum xs = list_sum ′ xs”

Exercise 2.2 Folding over Trees

Define a datatype for binary trees that store data only at leafs.
datatype ′a ltree =

Define a function that returns the list of elements resulting from an in-order traversal of
the tree.
fun inorder :: “ ′a ltree ⇒ ′a list”

In order to fold over the elements of a tree, we could use fold f (inorder t) s.

Define a function fold_ltree that is recursive on the structure of the tree, and that returns
the same result as fold f (inorder t) s.
fun fold_ltree :: “(′a ⇒ ′s ⇒ ′s) ⇒ ′a ltree ⇒ ′s ⇒ ′s”
lemma “fold f (inorder t) s = fold_ltree f t s”

1

Define a function mirror that reverses the order of the leafs, i.e. that satisfies the
following specification:
lemma “inorder (mirror t) = rev (inorder t)”

Exercise 2.3 Shuffle Product

A shuffle of two lists, xs and ys, is a list that contains exactly the elements of xs and ys
s.t. every two elements x ∈ xs (resp. ys) and x ′ ∈ xs (resp. ys) occur in the shuffle in
the same order they do in xs (resp. ys).
Define a function shuffles that returns a list of all shuffles of two given lists
fun shuffles :: “ ′a list ⇒ ′a list ⇒ ′a list list”

Show that the length of any shuffle of two lists is the sum of the length of the original
lists.
lemma “zs ∈ set (shuffles xs ys) =⇒ length zs = length xs + length ys”

Homework 2.1 Association Lists

Submission until Thursday, May 02, 23:59pm.

An association list is a list of pairs. An entry (k,v) means that key k is associated to
value v.
For an association list xs, the collect k xs operation returns a list of all values associated
to key k, in the order stored in the list. Specify the function collect by a set of recursion
equations:
fun collect :: “ ′a ⇒ (′a × ′b) list ⇒ ′b list”

Test cases
definition ctest :: “(int ∗ int) list” where “ctest ≡ [

(2,3),(2,5),(2,7),(2,9),
(3,2),(3,4),(3,5),(3,7),(3,8),
(4,3),(4,5),(4,7),(4,9),
(5,2),(5,3),(5,4),(5,6),(5,7),(5,8),(5,9),
(6,5),(6,7),
(7 ,2),(7 ,3),(7 ,4),(7 ,5),(7 ,6),(7 ,8),(7 ,9),
(8,3),(8,5),(8,7),(8,9),
(9,2),(9,4),(9,5),(9,7),(9,8)

]”

value “collect 3 ctest = [2,4,5,7 ,8]”
value “collect 1 ctest = []”

2

An experienced functional programmer might also write this function as

map snd (filter (λkv. fst kv = x) ys)

Show that this specifies the same function:
lemma collect_alt: “collect x ys = map snd (filter (λkv. fst kv = x) ys)”

When the lists get bigger, efficiency might be a concern. To avoid stack overflows,
you might want to specify a tail-recursive version of collect. The first parameter is the
accumulator, that accumulates the elements to be returned, and is returned at the end.
Note: To avoid appending to the accumulator, we accumulate the elements in reverse
order, and reverse the accumulator at the end.
Complete the second equation!
fun collect_tr :: “ ′a list ⇒ ′b ⇒ (′b × ′a) list ⇒ ′a list” where

“collect_tr acc x [] = rev acc”

Show correctness of your tail-recursive version. Hint: Generalization!

lemma collect_tr_collect: “collect_tr [] x ys = collect x ys”

Homework 2.2 Perfectly Balanced Trees

Submission until Thursday, May 02, 23:59pm.

Recall the tree datatype ′a ltree from the tutorial. Define functions to return the height
(A leaf has height 0) and the number of leafs:
fun lheight :: “ ′a ltree ⇒ nat”
fun num_leafs :: “ ′a ltree ⇒ nat”

A tree is perfectly balanced iff, for each node, the left and right subtree have the same
height. Specify a function to check that a tree is perfectly balanced.
fun perfect :: “ ′a ltree ⇒ bool”

Show that, for a perfectly balanced tree with height h and number of leafs l, we have
l = 2h:
lemma perfect_num_leafs_height: “perfect t =⇒ num_leafs t = 2^lheight t”

Homework 2.3 Shuffles

Submission until Thursday, May 02, 23:59pm.

In the tutorial you have defined the function shuffles. Show that the elements in a shuffle
are exactly the elements of the input lists.
lemma set_shuffles: “zs ∈ set (shuffles xs ys) =⇒ set zs = set xs ∪ set ys”

3

