
Technische Universität München SS 24
Institut für Informatik 10. 5. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 4

Exercise 4.1 List Elements in Interval

Write a function to in-order list all elements of a BST in a given interval. I.e. in_range
t u v shall list all elements x with u≤x≤v. Write a recursive function that does not
descend into subtrees that definitely contain no elements in the given range.
fun in_range :: “ ′a::linorder tree ⇒ ′a ⇒ ′a ⇒ ′a list”

Show that you list the right set of elements
lemma “bst t =⇒ set (in_range t u v) = {x∈set_tree t. u≤x ∧ x≤v}”

Show that your list is actually in-order
lemma “bst t =⇒ in_range t u v = filter (λx. u≤x ∧ x≤v) (inorder t)”

Exercise 4.2 Enumeration of Trees

Write a function that generates the set of all trees up to a given height. Show that only
trees up to the specified height are contained.
fun enum :: “nat ⇒ unit tree set”
lemma enum_sound: “t ∈ enum n =⇒ height t ≤ n”

Show the other direction, i.e. that all trees of the specified height are contained.
lemma enum_complete: “height t ≤ n =⇒ t ∈ enum n”

lemma enum_correct: “enum h = {t. height t ≤ h}”

1



Homework 4.1 Min Annotated Trees

Submission until Thursday, 16 May, 23:59pm.

In this homework, we will develop an augmented binary search tree that stores the
minimum element in the tree at the root. This auxiliary information enables the imple-
mentation of more efficient membership queries.
datatype ′a mtree = Leaf | Node “ ′a mtree” (minimum: ′a) (element: ′a) “ ′a mtree”

Define a function to return the set of elements in such a tree
fun set_mtree2 where

Define a recursive function that charcterises the invariant on the tree: the binary search
tree property and the correct minimum node labels. Note: you should not use the
function Min.
fun mbst :: “ ′a::{linorder ,zero} mtree ⇒ bool” where

To confirm that the invariant characterises what it is supposed to, define a function which
computes the minimum value in an ordered tree. This function should be recursive on
the given tree. You can assume the tree is an ordered tree.
fun min_val :: “ ′a::{linorder ,zero} mtree ⇒ ′a” where

Show that this function returns the label of the root of a given tree, if the tree is mbst.
lemma mbst_minval: “mbst (Node l m a r) =⇒ min_val (Node l m a r) = m”

Define the insert function for this tree. Note: it has to correctly update the node with
the correct minimum labels.
fun mins :: “ ′a::{linorder ,zero} ⇒ ′a mtree ⇒ ′a mtree” where

Now show that mins preserves the invariant. Hint: you will need a lemma showing that
mins actually inserts the element in the set of elements in the tree.
lemma mbst_mins: “mbst t =⇒ mbst (mins x t)”

Define the membership query function and show it correct. Note: the function has to
exploit the augmented minimum value!
fun misin :: “ ′a::linorder ⇒ ′a mtree ⇒ bool” where

lemma misin_set: “mbst t =⇒ misin x t ←→ x∈set_mtree2 t”

2



Specify a function that lists the elements within a given range in a given augmented
tree and show that it lists the right elements. Again, the function must exploit the
augmented minimum values.
fun mtree_in_range :: “ ′a::linorder mtree ⇒ ′a ⇒ ′a ⇒ ′a list”

Show that the function lists the right set of elements
lemma mbst_range: “mbst t =⇒ set (mtree_in_range t u v) = {x∈set_mtree2 t. u≤x ∧ x≤v}”

3


