
Technische Universität München SS 24
Institut für Informatik 17. 5. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 5

Solve this exercise sheet without sledgehammer proofs i.e., smt, metis, meson, or moura
are forbidden! Furthermore, no apply allowed!
Additional note: As the lecture did not cover how to formulate induction proofs using Isar
yet, you will not have to set up inductions yourself during this tutorial and homework.
Instead the template will provide the necessary steps (except at indicated positions).

Exercise 5.1 Fist Isar Steps

Using Isar, show the following theorem over natural numbers:
theorem

assumes “x ≥ (1 :: nat)”
shows “(x + x^2)^2 ≤ 4 ∗ x^4”

Hint: When phrasing intermediate goals, check your types. While you are not allowed
to use sledgehammer proofs, it might still be helpful to search for relevant lemmas.

Exercise 5.2 Bounding power-of-two by factorial

Prove that, for all natural numbers n > 3, we have 2n < n!.
lemma exp_fact_estimate: “n>3 =⇒ (2::nat)^n < fact n”

Warning! Make sure that your numerals have the right type, otherwise proofs will not
work! To check the type of a numeral, hover the mouse over it with pressed CTRL (Mac:
CMD) key. Example:
lemma “2^n ≤ 2^Suc n”

apply auto oops

Leaves the subgoal 2 ^ n ≤ 2 ∗ 2 ^ n

You will find out that the numeral 2 has type ′a, for which you do not have any ordering
laws. So you have to manually restrict the numeral’s type to, e.g., nat.
lemma “(2::nat)^n ≤ 2^Suc n” by simp

1



Exercise 5.3 Sum Squared is Sum of Cubes

• Define a recursive function sumto f n =
∑

i=0...n f(i).
• Show that (

∑
i=0...n i)

2 =
∑

i=0...n i
3.

fun sumto :: “(nat ⇒ nat) ⇒ nat ⇒ nat”

You may need the following lemma (which requires a very simple induction proof):
lemma sum_of_naturals: “2 ∗ sumto (λx. x) n = n ∗ (n + 1)”

in order to prove the intended goal:
lemma “sumto (λx. x) n ^ 2 = sumto (λx. x^3) n”

Exercise 5.4 Pretty Printing of Binary Trees

(Only if time left, this whole exercise does require induction)
Binary trees can be uniquely pretty-printed by emitting a symbol L for a leaf, and a
symbol N for a node. Each N is followed by the pretty-prints of the left and right tree.
No additional brackets are required!
datatype ′a tchar = L | N ′a

fun pretty :: “ ′a tree ⇒ ′a tchar list”
value “pretty (Node (Node Leaf 0 Leaf ) (1::nat) (Node Leaf 2 Leaf )) = [N 1, N 0, L, L, N 2, L,
L]”

Show that pretty-printing is actually unique, i.e. no two different trees are pretty-printed
the same way. Hint: Auxiliary lemma.

lemma pretty_unique: “pretty t = pretty t ′ =⇒ t=t ′”

Define a function that checks whether two binary trees have the same structure. The
values at the nodes may differ.
fun bin_tree2 :: “ ′a tree ⇒ ′b tree ⇒ bool”

While this function itself is not very useful, the induction principle generated by the
function package is! It allows simultaneous induction over two trees:
print_statement bin_tree2.induct

Try to prove the above lemma with that new induction principle.

2



Note: The following homeworks impose restrictions that are not checked by the submis-
sion system, however the tutor will check them manually. If you are not sure how to
interpret them, please contact the tutor.

Homework 5.1 More steps with Isar

Submission until Thursday, 23.05.24, 23:59pm.
Prove the following inequality which the tutor fondly remembers from some introductory
mathematics course. Use a direct, structured Isar proof.
Hint: Try to prove the statement using pen and paper first and then formalize your
proof.
Hint: Even if you are not allowed to use other proof tools in your submission, they can
still be useful for exploring. find_theorems can also be useful to find missing facts
lemma nth_root_of_plus_1_bound:

fixes x :: real and n :: nat
assumes “x≥0” and “n>0”
shows “root n (1+x) ≤ 1 + x/n”

In addition to the global restrictions on this sheet, the only proof methods allowed are
simp and blast (So for example auto, fastforce, algebra, . . . are also forbidden). Of
course all of the Isar syntax (have, show, from, using, ...), forward proofs, instantiation,
etc. are still allowed. Each proof step should therefore be of form by (simp <optional
modifiers>) or by blast.

In your proof you will probably need the Bernoulli_inequality:
− 1 ≤ x =⇒ 1 + real n ∗ x ≤ (1 + x)n

which is already proven for you in the standard library.

Homework 5.2 Binet

Submission until Thursday, 23.05.24, 23:59pm.
The Fibonacci numbers can be computed by the following function:
fun fib :: “nat ⇒ nat” where

“fib 0 = 0”
| “fib (Suc 0) = 1”
| “fib (Suc (Suc n)) = fib (Suc n) + fib n”

Prove the following closed-form expression for them, well-known as Binet’s formula:
lemma binet: “fib n = (Φ^n − Ψ^n) / sqrt 5”

3



Here, Φ, Ψ are defined as Φ ≡ (1 + sqrt 5) / 2 and Ψ ≡ (1 − sqrt 5) / 2.
Once again, it might be helpful, to think about how to do the proof using pen and paper
first.
For readability, each step in that chain must be very simple: it must use simp with at
most one deleted fact and one additional fact (i.e. global lemma, assumption, IH) or
field_simps.
The lemmas Φ_square: Φ2 = 1 + Φ and Ψ_square: Ψ2 = 1 + Ψ may be helpful.

Homework 5.3 Trisecting lists

Submission until Thursday, 23.05.24, 23:59pm.
For this exercise the restrictions from the previous exercises no longer apply. You are
still forbidden sledgehammer proofs and apply, as defined at the top of the sheet.
Show that each list can be split into three parts, with the first two of them having exactly
a third of the length of the original list, and the third being the leftover elements.
lemma trisecting:

“∃ xs ys zs . length xs = length as div 3 ∧ length ys = length as div 3 ∧ as = xs @ ys @ zs”

4


