
Technische Universität München SS 24
Institut für Informatik 31. 5. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 6

Exercise 6.1 Estimate for Number of Leafs

Note: Use Isar, proofs using metis, smt, meson, or moura (as generated by sledgeham-
mer) are forbidden!
Define a function to count the number of leafs in a binary tree:
fun num_leafs :: “ ′a tree ⇒ nat”

Show that we can estimate the number of leafs in a tree as follows:
theorem num_leafs_est: “num_leafs t ≤ 2^height t”

Exercise 6.2 Paths in Graphs

A graph is described by its adjacency matrix, i.e., G :: ′a ⇒ ′a ⇒ bool.
Define a predicate path G u p v that is true if p is a path from u to v, i.e., p is a list of
nodes, not including u, such that the nodes on the path are connected with edges. In
other words, path G u (p1. . . pn) v, iff G u p1, G pi pi+1, and pn = v. For the empty
path (n=0), we have u=v.
fun path :: “(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool”

Test cases
definition “nat_graph x y ←→ y=Suc x”
value ‹path nat_graph 2 [] 2›
value ‹path nat_graph 2 [3,4,5] 5›
value ‹¬ path nat_graph 3 [3,4,5] 6›
value ‹¬ path nat_graph 2 [3,4,5] 6›

Show the following lemma, that decomposes paths. Register it as simp-lemma.
lemma path_append[simp]: “path G u (p1@p2) v ←→ (∃w. path G u p1 w ∧ path G w p2 v)”

Show that, for a non-distinct path from u to v, we find a longer non-distinct path from u
to v. Note: This can be seen as a simple pumping-lemma, allowing to pump the length
of the path.

1

Hint: Theorem not_distinct_decomp.
lemma pump_nondistinct_path:

assumes P: “path G u p v”
and ND: “¬distinct p”

shows “∃ p ′. length p ′ > length p ∧ ¬distinct p ′ ∧ path G u p ′ v”

Exercise 6.3 Level-order Traversal

(adapted from a previous exam question, only if time left)
Write a function levels that lists all elements of a binary tree level by level, from left to
right, e.g.: levels 〈〈〈〉, 2, 〈〉〉, 1, 〈〈〈〉, 4, 〈〉〉, 3, 〈〉〉〉 = [[1], [2, 3], [4]]. You may define
auxiliary functions, but your function should only traverse the tree once.

fun levels :: “ ′a tree ⇒ ′a list list”

Show that the number of levels is exactly the height of the tree:

lemma levels_height: “length(levels t) = height t”

The set function for a list of levels is defined by first creating a set of sets and then
taking the union over those (denoted

⋃
):

definition set2 :: “ ′a list list ⇒ ′a set” where
“set2 xss ≡

⋃
(set (map set xss))”

Show that levels returns the correct elements.

Hint: In your induction step, you will likely need a chain of equations.
lemma levels_set: “set2 (levels t) = set_tree t”

Homework 6.1 Simple Paths

Submission until Thursday, June 6, 23:59pm.
A simple path is a path without loops, or, in other words, a path where no node occurs
twice. (Note that the first node of the path is not included, such that there may be a
simple path from u to u.)
Show that for every path, there is a corresponding simple path:
lemma exists_simple_path:

assumes “path G u p v”
shows “∃ p ′. path G u p ′ v ∧ distinct p ′”

Your proof should be by induction on the length of p. Use the induction principle
length_induct for this.

2

Homework 6.2 Sorting Networks

Submission until Thursday, June 06, 23:59pm.
Comparison networks are a model of parallel algorithms on fixed-size lists. A sorting
network is a specific comparison network that sorts its input lists.
A comparison network can be viewed as set of wires xi, one for each list element. Between
those wires are a number of comparators ci; each comparator is connected to two wires.
For Example (lists of size three):

x0---[]--------[]----
| c0 | c2

x1---[]---[]---[]----
| c1

x2--------[]---------

Each comparator will shift the greater element of its inputs up, and the smaller element
down.
We represent a network by a list of comparators, where each comparator is characterized
by the index of its wires – i.e., c0=(0,1), and after the applying c0, the greater element
will be at position of x1.
That is, a comparator (i,j) should place the smaller/larger of its two inputs at wire i/j
respectively.
type_synonym comparator = “(nat × nat)”
type_synonym compnet = “comparator list”

Write a function to perform the computation of a single comparator on a ′a list. If the
comparator would compare elements out of the range of the input list, return the input
unchanged.
Hint: Use the existing list_update and nth functions. list_update also has nice snytax:
xs[0 := 1, 1 := 2]
definition compnet_step :: “comparator ⇒ ′a :: linorder list ⇒ ′a list”

Some test cases:
value “compnet_step (1,100) [1,2::nat] = [1,2]”
value “compnet_step (1,2) [1,3,2::nat] = [1,2,3]”

The whole network operation is now a step-wise fold over the comparators:
definition run_compnet :: “compnet ⇒ ′a :: linorder list ⇒ ′a list” where

“run_compnet = fold compnet_step”

Start by proving that compnets keep the mset unchanged.
theorem compnet_mset[simp]: “mset (run_compnet comps xs) = mset xs”

Sortedness is a bit more difficult. Define a sorting net for lists of length 4 first. Use at
most five comparators!

3

definition sort4 :: compnet
value “length sort4 ≤ 5”
value “run_compnet sort4 [4,2,1,3::nat] = [1,2,3,4]”

We want to prove that this definition is correct:
lemma “length ls = 4 =⇒ sorted (run_compnet sort4 ls)”

oops

However, doing that directly is not easily possible. But we can easily prove that it sorts
boolean lists, since there is only a finite number of those.
We use the function all_n_lists to obtain a version of the lemma that doesn’t contain
any free variables, so that eval can prove it exhaustively. Then we show that this holds
when stated in the more obvious way.
lemma sort4_bool_exhaust: “all_n_lists (λbs::bool list. sorted (run_compnet sort4 bs)) 4”

— Should be provable by eval if your definition is correct!

lemma sort4_bool: “length (bs::bool list) = 4 =⇒ sorted (run_compnet sort4 bs)”
using sort4_bool_exhaust[unfolded all_n_lists_def] set_n_lists by fastforce

From that, we can show that our networks sorts any list – this is known as the zero-one
principle. First prove that the sorting does not change when mapped with a monotone
function (ctrl+click to see the definition of mono).

lemma compnet_map_mono:
assumes “mono f”

shows “run_compnet cs (map f xs) = map f (run_compnet cs xs)”

Now prove the zero-one principle.
Hint: Prove the theorem by contradiction using the properties we have already shown.
You will not need an induction. If you are stuck, look for a proof on paper in existing lit-
erature (For example from Wikipedia: https://en.wikipedia.org/wiki/Sorting_network).
For local abbreviations within a proof use let, as introduced in the lecture.
theorem zero_one_principle:

assumes “
∧

bs:: bool list. length bs = length xs =⇒ sorted (run_compnet cs bs)”
shows “sorted (run_compnet cs xs)” (is “sorted ?rs”)

Finally, sortedness of the sort4 net follows (for any type).
corollary “length xs = 4 =⇒ sorted (run_compnet sort4 xs)”

by (simp add: sort4_bool zero_one_principle)

4

https://en.wikipedia.org/wiki/Sorting_network

