Functional Data Structures

Exercise Sheet 6

Exercise 6.1 Estimate for Number of Leafs

Note: Use Isar, proofs using *metis*, *smt*, *meson*, *or moura* (as generated by sledgehammer) are forbidden!

Define a function to count the number of leafs in a binary tree:

fun $num_leafs :: "'a tree <math>\Rightarrow nat"$

Show that we can estimate the number of leafs in a tree as follows:

theorem num_leafs_est : "num_leafs $t \le 2$ `height t"

Exercise 6.2 Paths in Graphs

A graph is described by its adjacency matrix, i.e., $G :: 'a \Rightarrow 'a \Rightarrow bool$.

Define a predicate path $G \ u \ p \ v$ that is true if p is a path from u to v, i.e., p is a list of nodes, not including u, such that the nodes on the path are connected with edges. In other words, path $G \ u \ (p_1 \dots p_n) \ v$, iff $G \ u \ p_1$, $G \ p_i \ p_{i+1}$, and $p_n = v$. For the empty path (n=0), we have u=v.

fun path :: "(' $a \Rightarrow a \Rightarrow bool$) $\Rightarrow a \Rightarrow a list \Rightarrow a \Rightarrow bool$ "

Test cases

definition "nat_graph $x y \leftrightarrow y=Suc x$ " **value** $\langle path \ nat_graph \ 2 \ [] \ 2 \rangle$ **value** $\langle path \ nat_graph \ 2 \ [3,4,5] \ 5 \rangle$ **value** $\langle \neg \ path \ nat_graph \ 3 \ [3,4,5] \ 6 \rangle$ **value** $\langle \neg \ path \ nat_graph \ 2 \ [3,4,5] \ 6 \rangle$

Show the following lemma, that decomposes paths. Register it as simp-lemma.

lemma path_append[simp]: "path G u (p1@p2) $v \leftrightarrow (\exists w. path G u p1 w \land path G w p2 v)$ "

Show that, for a non-distinct path from u to v, we find a longer non-distinct path from u to v. Note: This can be seen as a simple pumping-lemma, allowing to pump the length of the path.

Hint: Theorem *not_distinct_decomp*.

lemma pump_nondistinct_path: assumes P: "path G u p v" and ND: " \neg distinct p" shows " $\exists p'$. length p' > length $p \land \neg$ distinct $p' \land$ path G u p' v"

Exercise 6.3 Level-order Traversal

(adapted from a previous exam question, only if time left)

Write a function *levels* that lists all elements of a binary tree level by level, from left to right, e.g.: *levels* $\langle\langle\langle\rangle, 2, \langle\rangle\rangle, 1, \langle\langle\langle\rangle, 4, \langle\rangle\rangle, 3, \langle\rangle\rangle\rangle = [[1], [2, 3], [4]]$. You may define auxiliary functions, but your function should only traverse the tree once.

fun levels :: "'a tree \Rightarrow 'a list list"

Show that the number of levels is exactly the height of the tree:

lemma *levels_height:* "*length*(*levels* t) = *height* t"

The set function for a list of levels is defined by first creating a set of sets and then taking the union over those (denoted \bigcup):

definition set2 :: "'a list list \Rightarrow 'a set" where "set2 xss $\equiv \bigcup (set (map \ set xss))$ "

Show that *levels* returns the correct elements.

Hint: In your induction step, you will likely need a chain of equations.

lemma *levels_set:* "*set2* (*levels* t) = *set_tree* t"

Homework 6.1 Simple Paths

Submission until Thursday, June 6, 23:59pm.

A simple path is a path without loops, or, in other words, a path where no node occurs twice. (Note that the first node of the path is not included, such that there may be a simple path from u to u.)

Show that for every path, there is a corresponding simple path:

lemma exists_simple_path: **assumes** "path $G \ u \ p \ v$ " **shows** " $\exists p'$. path $G \ u \ p' \ v \land distinct \ p'$ "

Your proof should be by induction on the length of p. Use the induction principle $length_induct$ for this.

Homework 6.2 Sorting Networks

Submission until Thursday, June 06, 23:59pm.

Comparison networks are a model of parallel algorithms on fixed-size lists. A sorting network is a specific comparison network that sorts its input lists.

A comparison network can be viewed as set of wires x_i , one for each list element. Between those wires are a number of *comparators* c_i ; each comparator is connected to two wires. For Example (lists of size three):

x0---[]-----[]----| c0 | c2 x1---[]---[]----| c1 x2-----[]----

Each comparator will shift the greater element of its inputs up, and the smaller element down.

We represent a network by a list of comparators, where each comparator is characterized by the index of its wires – i.e., $c_0 = (0, 1)$, and after the applying c_0 , the greater element will be at position of x_1 .

That is, a comparator (i,j) should place the smaller/larger of its two inputs at wire i/j respectively.

type_synonym comparator = "(nat × nat)" type_synonym compnet = "comparator list"

Write a function to perform the computation of a single comparator on a 'a list. If the comparator would compare elements out of the range of the input list, return the input unchanged.

Hint: Use the existing *list_update* and *nth* functions. *list_update* also has nice snytax: xs[0 := 1, 1 := 2]

definition compnet_step :: "comparator \Rightarrow 'a :: linorder list \Rightarrow 'a list"

Some test cases:

value "compnet_step (1,100) [1,2::nat] = [1,2]" value "compnet_step (1,2) [1,3,2::nat] = [1,2,3]"

The whole network operation is now a step-wise fold over the comparators:

definition $run_compnet ::$ "compnet \Rightarrow 'a :: linorder list \Rightarrow 'a list" where "run_compnet = fold compnet_step"

Start by proving that compnets keep the *mset* unchanged.

theorem compnet_mset[simp]: "mset (run_compnet comps xs) = mset xs"

Sortedness is a bit more difficult. Define a sorting net for lists of length 4 first. Use at most five comparators!

definition sort4 :: compared value "length sort4 ≤ 5 " value "run_comparet sort4 [4,2,1,3::nat] = [1,2,3,4]"

We want to prove that this definition is correct:

lemma "length $ls = 4 \implies sorted (run_compnet sort4 ls)$ " oops

However, doing that directly is not easily possible. But we can easily prove that it sorts boolean lists, since there is only a finite number of those.

We use the function *all_n_lists* to obtain a version of the lemma that doesn't contain any free variables, so that *eval* can prove it exhaustively. Then we show that this holds when stated in the more obvious way.

lemma sort4_bool_exhaust: "all_n_lists (λ bs::bool list. sorted (run_compnet sort4 bs)) 4" — Should be provable by eval if your definition is correct!

lemma sort4_bool: "length (bs::bool list) = $4 \implies$ sorted (run_compact sort4 bs)" using sort4_bool_exhaust[unfolded all_n_lists_def] set_n_lists by fastforce

From that, we can show that our networks sorts any list – this is known as the *zero-one principle*. First prove that the sorting does not change when mapped with a monotone function (ctrl+click to see the definition of mono).

```
lemma compnet_map_mono:
    assumes "mono f"
    shows "run_compnet cs (map f xs) = map f (run_compnet cs xs)"
```

Now prove the zero-one principle.

Hint: Prove the theorem by contradiction using the properties we have already shown. You will not need an induction. If you are stuck, look for a proof on paper in existing literature (For example from Wikipedia: https://en.wikipedia.org/wiki/Sorting_network). For local abbreviations within a proof use *let*, as introduced in the lecture.

```
theorem zero_one_principle:
```

```
assumes "\land bs:: bool list. length bs = length xs \implies sorted (run_compart cs bs)"
shows "sorted (run_compart cs xs)" (is "sorted ?rs")
```

Finally, sortedness of the *sort4* net follows (for any type).

corollary "length $xs = 4 \implies$ sorted (run_comparet sort4 xs)" by (simp add: sort4_bool zero_one_principle)