
Technische Universität München SS 24
Institut für Informatik 7. 6. 2023

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 7

Exercise 7.1 Complexity of Naive Reverse

Show that the naive reverse function has quadratic running time in the length of the
input list. Use the command time_fun to generate the running time functions
Hint: Show an equality rather than an inequality.
thm append.simps

fun reverse where
“reverse [] = []”

| “reverse (x#xs) = reverse xs @ [x]”

Exercise 7.2 Selection Sort

Selection sort (also known as MinSort) sorts a list by repeatedly moving the smallest
element of the remaining list to the front.

Define a function that takes a non-empty list, and returns the minimum element and
the list with the minimum element removed
fun split_min :: “ ′a::linorder list ⇒ ′a × ′a list”

Show that split_min returns the minimum element
lemma split_min_min:

assumes “split_min xs = (y,ys)”
and “xs 6=[]”

shows “a∈set xs =⇒ y ≤ a”

Show that split_min returns exactly the elements from the list
lemma split_min_mset:

assumes “split_min (x#xs) = (y,ys)”
shows “mset (x#xs) = (mset (y#ys))”

Show the following lemma on the length of the returned list, and register it as [termination_simp].
The function package will require this to show termination of the selection sort function.

1

lemma split_min_snd_len_decr [termination_simp]:
assumes “(y,ys) = split_min (x#xs)”

shows “length ys < Suc (length xs)”

Selection sort can now be written as follows:
fun sel_sort where

“sel_sort [] = []”
| “sel_sort xs = (let (y,ys) = split_min xs in y#sel_sort ys)”

Show that selection sort is a sorting algorithm:
lemma sel_sort_mset[simp]: “mset (sel_sort xs) = mset xs”
lemma “sorted (sel_sort xs)”

Homework 7.1 Cost of Selection Sort

Submission until Thursday, June 15, 23:59pm. Recall the selection sort from the tutorial
(which can be found in the Defs).
The running time functions for split_min/sel_sort are already defined using the time_fun
command (in Defs).

Show the following closed form for T_split_min:
lemma T_split_min_cmpx: “xs 6= [] =⇒ T_split_min xs = length xs”

Try to find a closed formula for T_sel_sort yourself! (Hint: Should be O(n2))
If you struggle with finding a closed formula, you could try:

• Look at the first few values of T_sel_sort
• Put up a recurrence equation (depending only on the length of the list) and solve

it

theorem T_sel_sort_cmpx: “T_sel_sort xs = undefined”

Homework 7.2 Quicksort runtime complexity

Submission until Thursday, June 15, 23:59pm.
Prove that quicksort does at most a number of comparisons that is at most the square of
the length of the given list. The following is a cost function for the number of comparisons
of quicksort:
fun C_qsort :: “ ′a::linorder list ⇒ nat” where

“C_qsort [] = 0”
| “C_qsort (p#xs)

2

= C_qsort (filter (λx. x < p) xs) + C_qsort (filter (λx. x ≥ p) xs) + 2∗length xs”

Show that the number of required comparisons is at most (length xs)2.
Hints:

• Do an induction on the length of the list (length_induct), and, afterwards, a proof
by cases on the list constructors.

• Note that for natural numbers a2+b2 ≤ (a+b)2

• Have a look at the lemma sum_length_filter_compl

lemma C_qsort_bound: “C_qsort xs ≤ (length xs)2”

Homework 7.3 Pancake sorting

Submission until Thursday, June 15, 23:59pm.
Pancake sorting (https://en.wikipedia.org/wiki/Pancake_sorting)/sorting by prefix re-
versal is a special kind of sorting problem, in which the only operation allowed to modify
the list is to reverse some prefix of the list.
In this exercise, you should develop an algorithm that sorts a list this way, using a linear
number of reversals (in the length of the list) and prove that it is a sorting algorithm.
First, define a function to perform a prefix-reversal and show that it preserves the mul-
tiset of its elements. rev_pre n xs should reverse the order of the first n elements of xs.
If n≥length xs, it should reverse the entire list.
fun rev_pre:: “nat ⇒ ′a list ⇒ ′a list”

lemma mset_rev_pre[simp]: “mset (rev_pre n xs) = mset xs”

Based on this definition, define a function which moves the biggest element in a list to
the end using exactly two prefix-reversals. If there are multiple maximal elements, move
the first one first. Prove that it preserves the multiset of elements and that it moves the
maximum to the end:

definition place_max_correct :: “(′a::linorder) list ⇒ ′a list”

lemma mset_place_max_correct[simp]: “mset (place_max_correct (x#xs)) = mset (x#xs)”

lemma last_place_max_correct[]: “xs 6= [] =⇒ last (place_max_correct xs) = Max (set xs)”

Using place_max_correct define a simple algorithm that sorts a list by prefix reversal.
The algorithm should work similar to selection sort (sel_sort) from the tutorial. First,
move the maximum to the end using place_max_correct, then sort the remaining list.

3

https://en.wikipedia.org/wiki/Pancake_sorting

Note: Your algorithm must actually follow this scheme, in particular do not use/imple-
ment some different sorting algorithm.
Hint: You will probably need the following lemma for termination of psort
Hint: The functions last/butlast might be useful.
lemma length_place_max_correct[simp]: “length (place_max_correct (x#xs)) = length (x#xs)”

fun psort :: “(′a::linorder) list ⇒ ′a list”

Show that your algorithm is a sorting algorithm, that is show it preserves the multiset
of elements and produces a sorted list:
lemma psort_mset[simp]: “mset (psort xs) = mset xs”
lemma sorted_psort: “sorted (psort xs)”

Homework 7.4 Pancake sorting 2

Submission until Thursday, June 15, 23:59pm.
(This is a bonus exercise, worth 5 bonus points, when computing your homework per-
formance as a percentage, bonus points will only count on your side, but not towards
the total score, it will not be checked by the submission system. If you want to have it
corrected, please put a (*** bonus ***) into your file)
We want to show that it is possible to sort a list using a linear (in the length of the list)
number of reversals.
We could try to do this by defining a cost function for psort, counting the number of
reversals performed, and give a bound for it. However, here we try a different approach,
directly computing a certificate that tells us exactly which reversals to perform.
First, we define a function psortable_in xs k, which specifies what it means for a list xs
to be pancake-sortable in k reversals:
fun rev_pre_chain :: “nat list ⇒ ′a list ⇒ ′a list” where

“rev_pre_chain [] xs = xs”
| “rev_pre_chain (r#rs) xs = rev_pre_chain rs (rev_pre r xs)”

definition “psortable_in xs k ≡ ∃ rs . length rs ≤ k ∧ (let ys = rev_pre_chain rs xs in mset ys
= mset xs ∧ sorted ys)”

We now want to give an algorithm that computes such a rs. For this, give a modified
version of psort, which, instead of directly computing the sorted list, computes a list of
reversals one can to perform to sort the list.
fun psort_revs :: “(′a :: linorder) list ⇒ nat list”

Give and prove a linear (in the length of the input list) bound for the length of the list
of reversals computed by psort_revs

4

lemma length_psort_revs: “length (psort_revs xs) ≤ undefined”

Prove that applying the computed list of reversals sorts the list:
lemma mset_rev_pre_chain_psort_revs: “mset (rev_pre_chain (psort_revs xs) xs) = mset
xs”

lemma sorted_psort_revs: “sorted (rev_pre_chain (psort_revs xs) xs)”

Finally, conclude that you can sort any list in a linear number of reversals (in the length
of the input list):
theorem psortable_in_linear : “psortable_in xs undefined”

5

