
Technische Universität München SS 24
Institut für Informatik 21. 6. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 9

Exercise 9.1 Indicate Unchanged by Option

Write an insert function for red-black trees that either inserts the element and returns
a new tree, or returns None if the element was already in the tree.
fun ins ′ :: “ ′a::linorder ⇒ ′a rbt ⇒ ′a rbt option”
lemma “invc t =⇒ case ins ′ x t of None ⇒ ins x t = t | Some t ′⇒ ins x t = t ′”

Exercise 9.2 Joining 2-3-Trees

Implement and prove correct a function to combine two 2-3-trees of equal height, such
that the inorder traversal of the resulting tree is the concatenation of the inorder traversal
of the arguments, and the height of the result is either the height of the arguments, or
has increased by one. Use ′a upI to return the result, similar to Tree23_Set.ins:
fun joinS :: “ ′a tree23 ⇒ ′a tree23 ⇒ ′a upI”
lemma joinS_inorder :

fixes t1 t2 :: “ ′a tree23”
assumes “height t1 = height t2”
assumes “complete t1” “complete t2”
shows “inorder (treeI (joinS t1 t2)) = (inorder t1 @ inorder t2)”

lemma joinS_complete:
fixes t1 t2 :: “ ′a tree23”
assumes “height t1 = height t2”
assumes “complete t1” “complete t2”
shows “complete (treeI (joinS t1 t2)) ∧ hI (joinS t1 t2) = height t2”

Hints:

• Try to use automatic case splitting (auto split: . . .) instead of explicit case splitting
via Isar (There will be dozens of cases).

• To find bugs in your join function, or isolate the case where your automatic proof
does not (yet) work, use Isar to perform the induction proof case by case.

1

(Time permitting, similar ideas, do not use joinS)
Write a join function for complete 2-3-trees: The function shall take two 2-3-trees l and
r and an element x, and return a new 2-3-tree with the inorder-traversal l x r.
Write two functions, one for the height of l being greater, the other for the height of r
being greater. The result should also be a complete tree, with height equal to the greater
height of l and r.

height r greater:
fun joinL :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinL: “[[complete l; complete r ; height l < height r]]
=⇒ complete (treeI (joinL l x r)) ∧ hI (joinL l x r) = height r”

lemma inorder_joinL: “[[complete l; complete r ; height l < height r]]
=⇒ inorder (treeI (joinL l x r)) = inorder l @x # inorder r”

height l greater:
fun joinR :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upI”
lemma complete_joinR: “[[complete l; complete r ; height l > height r]] =⇒

complete (treeI (joinR l x r)) ∧ hI (joinR l x r) = height l”

lemma inorder_joinR: “[[complete l; complete r ; height l > height r]] =⇒ inorder (treeI (joinR
l x r)) = inorder l @x # inorder r”

Combine both functions.
fun joinA :: “ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a tree23”
lemma complete_joinA: “[[complete l; complete r]] =⇒ complete (joinA l x r)”

lemma inorder_joinA: “[[complete l; complete r]] =⇒ inorder (joinA l x r) = inorder l @x #
inorder r”

Homework 9.1 Insertion 1-2 Trees

Submission until Thursday, June 27, 23:59pm.
Similar to a 2-3 tree, we can construct search trees that consist of 1- and and 2-nodes and
maintains completeness. To achieve a logarithmic height, 1-nodes may not be chained,
i.e. the full invariant is::
invar 〈〉 = True
invar 〈t〉 = (case t of 〈〉 ⇒ True | 〈x〉 ⇒ False | 〈l, x, r〉 ⇒ height l = height r ∧ invar
l ∧ invar r)
invar 〈l, uu, r〉 = (height l = height r ∧ invar l ∧ invar r)
Define an insert function, similar to 2-3 trees (start by copying that function). Instead
of the three-node constructor, use an auxiliary merge function, which may be recursive

2

again. Your merge function should retain the invariant and preserve the inorder traversal
of its arguments.
fun merge :: “ ′a tree12 ⇒ ′a ⇒ ′a tree12 ⇒ ′a ⇒ ′a tree12 ⇒ ′a upI”
fun ins :: “ ′a::linorder ⇒ ′a tree12 ⇒ ′a upI”

Show that merge retains the inorder:
lemma inorder_merge[simp]:

“inorder(treeI (merge l a m b r)) = (inorder l) @ a # (inorder m) @ b # (inorder r)”

Show that insert retains the invariant:

theorem invar_ins: “invar t =⇒ invar (treeI (ins x t)) ∧ hI (ins x t) = height t”

Hint: Suitable lemmas about merge (invariant, height,...) are probably needed.

Homework 9.2 List to RBT

Submission until Thursday, June 27, 23:59pm.
In this task you are to define a function list_to_rbt which constructs a red-black tree
that contains the members of a given list.

Hint:
This function could be constructed by composing two functions. The first is a function
that constructs an almost complete binary tree from a list (see the function balance_list
in HOL−Data_Structures.Balance) – a tree is almost complete if its minimum height
and its height differ by at most 1 (see acomplete in the file HOL−Library.Tree)
The second function, which is mk_rbt, constructs the equivalent red-black tree to a given
almost complete binary tree:
fun mk_rbt :: “ ′a tree ⇒ ′a rbt” where

“mk_rbt 〈〉 = 〈〉”
| “mk_rbt 〈l, a, r〉 = (let

l ′=mk_rbt l;
r ′=mk_rbt r

in
if min_height l > min_height r then

B (paint Red l ′) a r ′

else if min_height l < min_height r then
B l ′ a (paint Red r ′)

else
B l ′ a r ′

)”

fun list_to_rbt :: “ ′a list ⇒ ′a rbt”

Hint: If you follow the hint above and construct the function list_to_rbt by composing
the functions mk_rbt and balance_list, then a good idea to prove the theorems required

3

below is to prove lemmas about mk_rbt applied to almost complete trees, and then
leverage the results to get the theorems about list_to_rbt

Warmup

Show the following alternative characterization of almost complete:
lemma acomplete_alt:

“acomplete t ←→ height t = min_height t ∨ height t = min_height t + 1”

The Easy Parts

Show that the inorder traversal of the tree constructed by list_to_rbt is the same as the
given list:

lemma mk_rbt_inorder : “Tree2.inorder (list_to_rbt xs) = xs”

Show that the color of the root node is always black:

lemma mk_rbt_color : “color (list_to_rbt xs) = Black”

Medium Complex Parts

Show that the returned tree satisfies the height invariant.

lemma mk_rbt_invh: “invh (list_to_rbt xs)”

Hint: Use Isar to have better control on when to unfold with acomplete_alt, and when to
use (e.g. to discharge the premises of the IH). Also, a useful lemma to prove is acomplete
?t =⇒ bheight (mk_rbt ?t) = min_height ?t.

The Hard Part (Bonus, 3 points)

Show that the returned tree satisfies the color invariant.

lemma mk_rbt_invc: “invc (list_to_rbt t)”

Hint: A useful lemma is acomplete ?t =⇒ invc (mk_rbt ?t). To prove it, combine case
splitting, automation and manual proof (Isar, aux-lemmas), in order to deal with the
multiple cases without a combinatorial explosion of the proofs.

4

