
Technische Universität München SS 24
Institut für Informatik 28. 6. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 10

Exercise 10.1 Union Function on Tries

Define a function to union two tries and show its correctness:
fun union :: “trie ⇒ trie ⇒ trie”
lemma “isin (union a b) x = isin a x ∨ isin b x”

Exercise 10.2 Tries with 2-3-trees

In the lecture, tries stored child nodes with an abstract map. We want to refine the trie
data structure to use 2-3-trees for the map. Note: To make the provided interface more
usable, we introduce some abbreviations here:
abbreviation “empty23 ≡ Leaf”
abbreviation “inv23 t ≡ complete t ∧ sorted1 (inorder t)”

The refined trie datatype:
datatype ′a trie ′ = Nd ′ bool “(′a× ′a trie ′) tree23”

Define an invariant for trie’ and an abstraction function to trie. Based on the original
tries, define membership, insertion, and deletion, and show that they behave correctly
wrt. the abstract trie. Finally, combine the correctness lemmas to get a set interface
based on 2-3-tree tries.
You will need a lemma like the following for termination:
lemma lookup_size_aux[termination_simp]:

“lookup m k = Some v =⇒ size (v:: ′a trie ′) < Suc (size_tree23 (λx. Suc (size (snd x))) m)”

fun trie ′_inv :: “ ′a::linorder trie ′ ⇒ bool”
fun trie ′_α :: “ ′a::linorder trie ′ ⇒ ′a trie”
definition empty ′ :: “ ′a trie ′” where
[simp]: “empty ′ = Nd ′ False empty23”

fun isin ′ :: “ ′a::linorder trie ′ ⇒ ′a list ⇒ bool”
fun insert ′ :: “ ′a::linorder list ⇒ ′a trie ′ ⇒ ′a trie ′”
fun delete ′ :: “ ′a::linorder list ⇒ ′a trie ′ ⇒ ′a trie ′”

1

definition set ′ :: “ ′a::linorder trie ′ ⇒ ′a list set” where
[simp]: “set ′ t = set (trie ′_α t)”

lemmas map23_thms[simp] = M .map_empty Tree23_Map.M .map_update Tree23_Map.M .map_delete
Tree23_Map.M .invar_empty Tree23_Map.M .invar_update Tree23_Map.M .invar_delete
M .invar_def M .inorder_update M .inorder_inv_update sorted_upd_list

interpretation S ′: Set
where empty = empty ′ and isin = isin ′ and insert = insert ′ and delete = delete ′

and set = set ′ and invar = trie ′_inv
proof (standard, goal_cases)

Homework 10.1 Tries with accepting leaves (5 points)

Submission until Thursday, July 4, 23:59pm.
Consider the following modified binary trie datatype:
datatype trie = LfR | LfA | Nd bool (trie × trie)
Instead of only one leaf constructor, it has two. The intended behaviour of LfR is to
act as the previous Lf constructor from the lecture does, that i,s when reaching it while
checking whether a list is in the trie you answer no. The LfA in contrast should be seen
as accepting, when it is reached during checking whether a list is in the trie, you answer
yes. If one draws an analogy to finite autmata: LfR are rejecting trap states, LfA are
accepting trap states.
Your job in this exercise it to instantiate the set interface for this modified trie. The defi-
nitions and proofs will be similar to the ones from HOL−Data_Structures.Tries_Binary,
so take inspiration from there for your definitions and proofs (Feel free to copy, paste
and modify)

The definition of empty_trie is unchanged:
empty_trie = LfR

Start by defining an isin_trie function:
fun isin_trie :: “trie ⇒ bool list ⇒ bool”

The abstraction function stays unchanged as well:
set_trie t = {xs. isin_trie t xs}

Your tries should always be fully shrunk. The following invariant captures this:
invar LfR = True
invar LfA = True
invar (Nd b (l, r)) = (invar l ∧ invar r ∧ (l = LfR ∧ r = LfR −→ b) ∧ (l = LfA ∧ r
= LfA −→ ¬ b))

Define a smart constructor for nodes, which ensures that the resulting trie fulfills the
invariant (if its arguments also do).

2

In order to avoid combinatorial explosions in later proofs, be very careful in unfolding
its definition and prefer to prove and use lemmas characterizing its behaviour instead.
definition node :: “bool ⇒ trie ∗ trie ⇒ trie”

Using your node smart constructor, define insert_trie and delete_trie functions and
prove them correct
fun insert_trie :: “bool list ⇒ trie ⇒ trie”
fun delete_trie :: “bool list ⇒ trie ⇒ trie”
lemma set_trie_insert_trie: “set_trie(insert_trie xs t) = set_trie t ∪ {xs}”
lemma set_trie_delete_trie: “set_trie(delete_trie xs t) = set_trie t − {xs}”

Finally, prove that your functions preserve the invariant and instantiate the locale:

lemma invar_insert_trie: “invar t =⇒ invar(insert_trie xs t)”
lemma invar_delete_trie: “invar t =⇒ invar(delete_trie xs t)”
interpretation S : Set

where empty = empty_trie and isin = isin_trie and insert = insert_trie and delete =
delete_trie

and set = set_trie and invar = invar

Homework 10.2 Be Creative!

Submission until Thursday, July 11, 23:59pm.
Develop a nice Isabelle formalisation yourself!

• You may develop a formalisation from all areas, not only functional data structures.
Creative topics are encouraged!

• Document your solution well, such that it is clear what you have formalised and
what your main theorems state!

• Set yourself a time frame and some intermediate/minimal goals. Your formalisation
needs not be universal and complete.

• You are encouraged to discuss the realisability of your project with us!
• Pick a topic this week and work on it (the regular homework is shorter). Next

week, the project will be the exclusive task.
• In total, the homework will yield 15 points (for minimal solutions). Additionally,

bonus points may be awarded for particularly nice/original/etc solutions.

3

