Technische Universitdt Miinchen SS 24
Institut fiir Informatik 5. 7.2024
Prof. Tobias Nipkow, Ph.D.
Simon RofBkopf

Functional Data Structures
Exercise Sheet 11

Exercise 11.1 Insert for Leftist Heap

e Define a function to directly insert an element into a leftist heap. Do not construct
an intermediate heap like insert via merge does!

o Show that your function is correct

e Define a timing function for your insert function, and show that it is linearly
bounded by the minimum height of the tree.

fun [h_insert :: “a::ord = 'a lheap = 'a lheap”

lemma set_[h_insert: “set_tree (Ih_insert x t) = set_tree t U {z}”
lemma heap_lh_insert: “heap t = heap (Ih_insert x t)”

lemma ltree_Ilh_insert: “ltree t = ltree (Ih_insert x t)”

time_ fun [h_insert

lemma “ltree t = T [h_insert x t < min__height t + 1”

Exercise 11.2 Bootstrapping a Priority Queue

Given a generic priority queue implementation with O(1) empty, is_empty operations,
O(f1 n) insert, and O(f2 n) get_min and del_min operations.

Derive an implementation with O(1) get_min, and the asymptotic complexities of the
other operations unchanged!

Hint: Store the current minimal element! As you know nothing about f1 and fs, you
must not use get_min/del_min in your new insert operation, and vice versa!

For technical reasons, you have to define the new implementations type outside the
locale!
datatype (‘a,’s) bs_pq =

locale Bs _Priority_ Queue =
orig: Priority_ Queue where



empty = orig_empty and
is_empty = orig_is _empty and
insert = orig__insert and
get_min = orig_get _min and
del_min = orig _del _min and
invar = orig_invar and
mset = orig_mset
for orig _empty orig_is_empty orig_insert orig__get_min orig_del min orig_invar
and orig_mset :: “’s = 'a::linorder multiset”
begin

In here, the original implementation is available with the prefix orig, e.g.

term orig empty term orig invar
thm orig.invar__empty

definition empty :: “(‘a,’s) bs_pq”

fun is_empty :: “('a,’s) bs_pq = bool”

fun insert :: “a = (‘a,’s) bs_pq = ('a,’s) bs_pq”

fun get_min :: “(a,’s) bs_pq = 'a”

fun del_min : ,'s) bs_pq = (‘a,’s) bs_pq”

fun invar = “('a,’s) bs_pg = bool”

fun mset :: “(‘a,’s) bs_pq = 'a multiset”

lemmas [simp] = orig.is_empty orig.mset__get_min orig.mset_del_min
orig.mset__insert orig.mset__empty
orig.invar__empty orig.invar__insert orig.invar__del _min

(‘a
{((/a,

Show that your new implementation satisfies the priority queue interface!

sublocale Priority_ Queue
where empty = empty
and is_empty = is_empty
and insert = insert
and get_min = get_min
and del _min = del _min
and invar = invar
and mset = mset
apply unfold_locales
proof goal_cases

Homework 11.1 Be Creative!

Submission until Thursday, July 11, 23:59pm.
Develop a nice Isabelle formalisation yourself!
¢ You may develop a formalisation from all areas, not only functional data structures.
Creative topics are encouraged!

e Document your solution well, such that it is clear what you have formalised and
what your main theorems state!



Set yourself a time frame and some intermediate/minimal goals. Your formalisation
needs not be universal and complete.

You are encouraged to discuss the realisability of your project with us!

In total, the homework will yield 15 points (for minimal solutions). Additionally,
bonus points may be awarded for particularly nice/original/etc solutions.

Finish your project this week. It does not need to be polished or completely
finished, but the main points should be there!

To submit, use the submission system if you have a single file. Submitting is
sufficient, ignore any errors that the submission system may raise when
checking the submission. If the project is more than one file, send an archive
by e-mail.



