
Technische Universität München SS 24
Institut für Informatik 12. 7. 2024

Prof. Tobias Nipkow, Ph.D.
Simon Roßkopf

Functional Data Structures
Exercise Sheet 12

Exercise 12.1 Amortized Complexity

A “stack with multipop” is a list with the following two interface functions:
fun push :: “ ′a ⇒ ′a list ⇒ ′a list” where
“push x xs = x # xs”

fun pop :: “nat ⇒ ′a list ⇒ ′a list” where
“pop n xs = drop n xs”

You may assume
definition T_push :: “ ′a ⇒ ′a list ⇒ nat” where
“T_push x xs = 1”

definition T_pop :: “nat ⇒ ′a list ⇒ nat” where
“T_pop n xs = min n (length xs)”

Use the potential method to show that the amortized complexity of push and pop is
constant.
If you need any properties of the auxiliary functions length, drop and min, you should
state them but you do not need to prove them.

Exercise 12.2 Sparse Binary Numbers

Implement operations carry, inc, and add on sparse binary numbers, analogously to the
operations link, ins, and merge on binomial heaps.
Show that the operations have logarithmic worst-case complexity.
type_synonym rank = nat
type_synonym snat = “rank list”

abbreviation invar :: “snat ⇒ bool” where “invar s ≡ sorted_wrt (<) s”
definition α :: “snat ⇒ nat” where “α s = sum_list (map ((^) 2) s)”

lemmas [simp] = sorted_wrt_append

1



fun carry :: “rank ⇒ snat ⇒ snat”

lemma carry_invar [simp]:
assumes “invar rs”

shows “invar (carry r rs)”

lemma carry_α:
assumes “invar rs”

and “∀ r ′∈set rs. r≤r ′”
shows “α (carry r rs) = 2^r + α rs”

definition inc :: “snat ⇒ snat”

lemma inc_invar [simp]: “invar rs =⇒ invar (inc rs)”

lemma inc_α[simp]: “invar rs =⇒ α (inc rs) = Suc (α rs)”

fun add :: “snat ⇒ snat ⇒ snat”

lemma add_invar [simp]:
assumes “invar rs1”

and “invar rs2”
shows “invar (add rs1 rs2)”

lemma add_α[simp]:
assumes “invar rs1”

and “invar rs2”
shows “α (add rs1 rs2) = α rs1 + α rs2”

thm sorted_wrt_less_sum_mono_lowerbound

lemma size_snat:
assumes “invar rs”

shows “2^length rs ≤ α rs + 1”

fun T_carry :: “rank ⇒ snat ⇒ nat”

definition T_inc :: “snat ⇒ nat”

lemma T_inc_bound:
assumes “invar rs”

shows “T_inc rs ≤ log 2 (α rs + 1) + 2”

fun T_add :: “snat ⇒ snat ⇒ nat”

lemma T_add_bound:
fixes rs1 rs2
defines “n1 ≡ α rs1”
defines “n2 ≡ α rs2”

2



assumes INVARS : “invar rs1” “invar rs2”
shows “T_add rs1 rs2 ≤ 4∗log 2 (n1 + n2 + 1) + 2”

Homework 12.1 A counter with increment and decrement operations

Submission until Thursday, July 18, 23:59pm.

A k-bit counter can be formalised as a list of booleans. An increment operation for such
a counter is defined as follows:
fun incr :: “bool list ⇒ bool list” where
“incr [] = []” |
“incr (False#bs) = True # bs” |
“incr (True#bs) = False # incr bs”

The running time of this increment operation can be defined as follows:
fun T_incr :: “bool list ⇒ nat” where
“T_incr [] = 0” |
“T_incr (False#bs) = 1” |
“T_incr (True#bs) = T_incr bs + 1”

For such a k-bit counter with only an increment operation, an amortised analysis of the
running time of a sequence of n increment operations reveals it is O(n). However, if the
counter has a decrement operation, then for a sequence of n operations, a lower bound
for the running time must be at least linear in the product nk. This holds regardless
of the time required to perform the decrement operation. In fact this holds for any
operation decr satisfying the following two assumption:
decr ((replicate (k−1) False) @ [True]) = (replicate (k−(Suc 0)) True) @ [False]
length (decr bs) = length bs
Above, replicate n x is the list [x, ..., x] of length n. The following locale specifies a
counter with such an operation.
locale counter_with_decr =

fixes decr ::“bool list ⇒ bool list” and k::“nat”
assumes

decr [simp]: “decr ((replicate (k−(Suc 0)) False) @ [True]) =
(replicate (k−(Suc 0)) True) @ [False]” and

decr_len_eq[simp]: “length (decr bs) = length bs” and
k[simp]: “1 ≤ k”

begin

In this homework you are required to show that indeed the running time of a sequence of
operations of length n is Θ(nk). You can assume that the running time of the decrement
operation is 1.
fun T_decr ::“bool list ⇒ nat” where

“T_decr _ = 1”

3



To prove the required running time, you will need to prove an upper and a lower bound
on the running time that are linear in nk. To prove either bound, you will need to reason
about lists whose elements are of the type op. Such lists correspond to lists of operations
on the counter.
datatype op = Decr | Incr

The running time of a list of operations is given by the function T_exec, is defined as
follows:
fun exec1::“op ⇒ (bool list ⇒ bool list)” where

“exec1 Incr = incr” |
“exec1 Decr = decr”

fun T_exec1::“op ⇒ (bool list ⇒ nat)” where
“T_exec1 Incr = T_incr” |
“T_exec1 Decr = T_decr”

fun T_exec :: “op list ⇒ bool list ⇒ nat” where
“T_exec [] bs = 0” |
“T_exec (op # ops) bs = (T_exec1 op bs + T_exec ops (exec1 op bs))”

Prove the following upper bound on the running time of sequences of operations:

theorem inc_dec_seq_ubound: “length bs = k =⇒ T_exec ops bs ≤ length ops ∗ length bs”

To prove the lower bound, you will need to define a function oplist that, given a natural
number n, constructs a list of operations whose running time is at least linear in nk for
at least one counter initial configuration, bs0.

fun oplist :: “nat ⇒ op list”

definition bs0

In the following, the two-element list induction scheme and nat case distinction might
be helpful.
lemma induct_list012[case_names empty single multi]:

“P [] =⇒ (
∧

x. P [x]) =⇒ (
∧

x y xs. P xs =⇒ P (x#y#xs)) =⇒ P xs”
by (rule List.induct_list012)

lemma case_nat012[case_names zero one two]:
“[[n = 0 =⇒ P; n = 1 =⇒ P;

∧
n ′. n = Suc (Suc n ′) =⇒ P]] =⇒ P”

by (metis One_nat_def nat.exhaust)

You are required to prove the following lower bound:

theorem inc_dec_seq_lbound: “length (oplist n) ∗ k ≤ 2 ∗ (T_exec (oplist n) bs0)”

4


