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sorted :: ( ′a::linorder) list ⇒ bool

sorted [] = True
sorted (x # ys) = ((∀ y∈set ys. x ≤ y) ∧ sorted ys)
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Correctness of sorting
Specification of sort :: ( ′a::linorder) list ⇒ ′a list:

sorted (sort xs)

Is that it? How about

set (sort xs) = set xs

Better: every x occurs as often in sort xs as in xs.
More succinctly:

mset (sort xs) = mset xs

where mset :: ′a list ⇒ ′a multiset
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What are multisets?

Sets with (possibly) repeated elements

Some operations:
{#} :: ′a multiset

add mset :: ′a ⇒ ′a multiset ⇒ ′a multiset
+ :: ′a multiset ⇒ ′a multiset ⇒ ′a multiset

mset :: ′a list ⇒ ′a multiset
set mset :: ′a multiset ⇒ ′a set

Import HOL−Library.Multiset
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HOL/Data_Structures/Sorting.thy

Insertion Sort Correctness
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Principle: Count function calls
For every function f :: τ 1 ⇒ ... ⇒ τn ⇒ τ
define a timing function Tf :: τ 1 ⇒ ... ⇒ τn ⇒ nat:

Translation of defining equations:
E [[f p1 . . . pn = e]] = (Tf p1 . . . pn = T [[e]] + 1)

Translation of expressions:
T [[f e1 . . . ek]] = T [[e1]] + . . . + T [[ek]] + Tf e1 . . . ek

All other operations (variable access, constants,
constructors, primitive operations on bool and numbers)
are assumed to take constant time.
For simplicity: constant = 0 (does not change O(.)!)
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Example: @
E [[ [] @ ys = ys ]]
= (T@ [] ys = T [[ys]] + 1)
= T@ [] ys = 1

E [[ (x # xs) @ ys = x # (xs @ ys) ]]
= (T@ (x # xs) ys = T [[x # (xs @ ys)]] + 1)
= T@ (x # xs) ys = T@ xs ys + 1

T [[x # (xs @ ys)]]
= T [[x]] + T [[xs @ ys]] + T# x (xs @ ys)
= 0 + (T [[xs]] + T [[ys]] + T@ xs ys) + 0
= 0 + (0 + 0 + T@ xs ys) + 0
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In a nutshell

T [[e]] =
∑

f e1 . . . en subterm of e
f user-defined

Tf e1 . . . en

Defining equation for f

f p1 . . . pn = e

becomes defining equation for Tf :
Tf p1 . . . pn = T [[e]] + 1

Another simplification:
we drop the +1 for non-recursive functions
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if & case

So far we model a call-by-value semantics

Conditionals and case expressions are evaluated lazily.
T [[if b then e1 else e2]]
= T [[b]] + (if b then T [[e1]] else T [[e2]])

T [[case e of p1 ⇒ e1 | . . . | pk ⇒ ek]]
= T [[e]] + (case e of p1 ⇒ T [[e1]] | . . . | pk ⇒ T [[ek]])
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Automation

The translation from f to Tf has been automated:
time_fun f
defines (and displays) Tf .

(Need to import theory Define Time Function)

An abstract model of time_fun has been proved correct
w.r.t. a semantics that counts computation steps.
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Discussion

• Tf is a formalization of the standard notion of
complexity used in the algorithms literature

• Precise complexity bounds (as opposed to O(.))
would require a formal model of (at least) the
compiler and the hardware.
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HOL/Data_Structures/Sorting.thy

Insertion sort complexity
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4 Merge Sort
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Bottom-Up
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merge :: ′a list ⇒ ′a list ⇒ ′a list
merge [] ys = ys
merge xs [] = xs
merge (x # xs) (y # ys) =
(if x ≤ y then x # merge xs (y # ys)
else y # merge (x # xs) ys)

msort :: ′a list ⇒ ′a list
msort xs =
(let n = length xs
in if n ≤ 1 then xs

else merge (msort (take (n div 2) xs))
(msort (drop (n div 2) xs)))
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Number of comparisons

C merge :: ′a list ⇒ ′a list ⇒ nat
C msort :: ′a list ⇒ nat
Lemma
C merge xs ys

≤ length xs + length ys

Theorem
length xs = 2k =⇒ C msort xs ≤ k ∗ 2k
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HOL/Data_Structures/Sorting.thy

Merge Sort
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msort bu :: ′a list ⇒ ′a list
msort bu xs = merge all (map (λx. [x]) xs)

merge all :: ′a list list ⇒ ′a list
merge all [] = []
merge all [xs] = xs
merge all xss = merge all (merge adj xss)

merge adj :: ′a list list ⇒ ′a list list
merge adj [] = []
merge adj [xs] = [xs]
merge adj (xs # ys # zss) =
merge xs ys # merge adj zss
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Number of comparisons

C merge adj :: ′a list list ⇒ nat
C merge all :: ′a list list ⇒ nat
C msort bu :: ′a list ⇒ nat
Theorem
length xs = 2k =⇒ C msort bu xs ≤ k ∗ 2k
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HOL/Data_Structures/Sorting.thy

Bottom-Up Merge Sort
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Even better

Make use of already sorted subsequences

Example
Sorting [7, 3, 1, 2, 5]:

do not start with [[7], [3], [1], [2], [5]]
but with [[1, 3, 7], [2, 5]]
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Archive of Formal Proofs

https://www.isa-afp.org/entries/
Efficient-Mergesort.shtml
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HOL/Library/Tree.thy
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Binary trees

datatype ′a tree = Leaf | Node ( ′a tree) ′a ( ′a tree)

Abbreviations: 〈〉 ≡ Leaf
〈l, a, r〉 ≡ Node l a r

Most of the time: tree = binary tree
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Tree traversal
inorder :: ′a tree ⇒ ′a list
inorder 〈〉 = []
inorder 〈l, x, r〉 = inorder l @ [x] @ inorder r

preorder :: ′a tree ⇒ ′a list
preorder 〈〉 = []
preorder 〈l, x, r〉 = x # preorder l @ preorder r

postorder :: ′a tree ⇒ ′a list
postorder 〈〉 = []
postorder 〈l, x, r〉 = postorder l @ postorder r @ [x]
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Size
size :: ′a tree ⇒ nat
|〈〉| = 0
|〈l, , r〉| = |l| + |r| + 1

size1 :: ′a tree ⇒ nat
|〈〉|1 = 1
|〈l, , r〉|1 = |l|1 + |r|1

Lemma |t|1 = |t| + 1

Warning: |.| and |.|1 only on slides

37



Height

height :: ′a tree ⇒ nat
h(〈〉) = 0
h(〈l, , r〉) = max (h(l)) (h(r)) + 1

Warning: h(.) only on slides

Lemma h(t) ≤ |t|

Lemma |t|1 ≤ 2h(t)
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Minimal height

min height :: ′a tree ⇒ nat
mh(〈〉) = 0
mh(〈l, , r〉) = min (mh(l)) (mh(r)) + 1

Warning: mh(.) only on slides

Lemma mh(t) ≤ h(t)

Lemma 2mh(t) ≤ |t|1
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Complete tree
complete :: ′a tree ⇒ bool
complete 〈〉 = True
complete 〈l, , r〉 =
(h(l) = h(r) ∧ complete l ∧ complete r)

Lemma complete t = (mh(t) = h(t))

Lemma complete t =⇒ |t|1 = 2h(t)

Lemma ¬ complete t =⇒ |t|1 < 2h(t)

Lemma ¬ complete t =⇒ 2mh(t) < |t|1

Corollary |t|1 = 2h(t) =⇒ complete t
Corollary |t|1 = 2mh(t) =⇒ complete t
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Almost complete tree

acomplete :: ′a tree ⇒ bool
acomplete t = (h(t) − mh(t) ≤ 1)

Almost complete trees have optimal height:
Lemma If acomplete t and |t| ≤ |t ′| then h(t) ≤ h(t ′).
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Warning

• The terms complete and almost complete
are not defined uniquely in the literature.

• For example,
Knuth calls complete what we call almost complete.

43



Chapter 8

Search Trees

44



8 Unbalanced BST

9 Abstract Data Types

10 2-3 Trees

11 Red-Black Trees

12 More Search Trees

13 Union, Intersection, Difference on BSTs

14 Tries and Patricia Tries

45



Most of the material focuses on
BSTs = binary search trees
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BSTs represent sets
Any tree represents a set:
set tree :: ′a tree ⇒ ′a set
set tree 〈〉 = {}
set tree 〈l, x, r〉 = set tree l ∪ {x} ∪ set tree r

A BST represents a set that can be searched in time
O(h(t))

Function set tree is called an abstraction function
because it maps the implementation
to the abstract mathematical object
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bst
bst :: ′a tree ⇒ bool

bst 〈〉 = True
bst 〈l, a, r〉 =
((∀ x∈set tree l. x < a) ∧
(∀ x∈set tree r. a < x) ∧ bst l ∧ bst r)

Type ′a must be in class linorder ( ′a :: linorder) where
linorder are linear orders (also called total orders).

Note: nat, int and real are in class linorder
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Set interface

An implementation of sets of elements of type ′a must
provide
• An implementation type ′s
• empty :: ′s
• insert :: ′a ⇒ ′s ⇒ ′s
• delete :: ′a ⇒ ′s ⇒ ′s
• isin :: ′s ⇒ ′a ⇒ bool
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Map interface

Instead of a set, a search tree can also implement a map
from ′a to ′b:
• An implementation type ′m
• empty :: ′m
• update :: ′a ⇒ ′b ⇒ ′m ⇒ ′m
• delete :: ′a ⇒ ′m ⇒ ′m
• lookup :: ′m ⇒ ′a ⇒ ′b option

Sets are a special case of maps
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Comparison of elements

We assume that the element type ′a is a linear order

Instead of using < and ≤ directly:

datatype cmp val = LT | EQ | GT

cmp x y =
(if x < y then LT else if x = y then EQ else GT)
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Implementation type: ′a tree

empty = Leaf

insert x 〈〉 = 〈〈〉, x, 〈〉〉
insert x 〈l, a, r〉 = (case cmp x a of

LT ⇒ 〈insert x l, a, r〉
| EQ ⇒ 〈l, a, r〉
| GT ⇒ 〈l, a, insert x r〉)
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isin 〈〉 x = False
isin 〈l, a, r〉 x = (case cmp x a of

LT ⇒ isin l x
| EQ ⇒ True
| GT ⇒ isin r x)
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delete x 〈〉 = 〈〉
delete x 〈l, a, r〉 =
(case cmp x a of

LT ⇒ 〈delete x l, a, r〉
| EQ ⇒ if r = 〈〉 then l

else let (a ′, r ′) = split min r in 〈l, a ′, r ′〉
| GT ⇒ 〈l, a, delete x r〉)

split min 〈l, a, r〉 =
(if l = 〈〉 then (a, r)
else let (x, l ′) = split min l in (x, 〈l ′, a, r〉))
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Why is this implementation
correct?

Because empty insert delete isin
simulate {} ∪ {.} − {.} ∈

set tree empty = {}
set tree (insert x t) = set tree t ∪ {x}
set tree (delete x t) = set tree t − {x}
isin t x = (x ∈ set tree t)

Under the assumption bst t
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Also: bst must be invariant

bst empty
bst t =⇒ bst (insert x t)
bst t =⇒ bst (delete x t)
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Key idea

Local definition:

sorted means sorted w.r.t. <

No duplicates!

=⇒ bst t can be expressed as sorted(inorder t)

Conduct proofs on sorted lists, not sets
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Two kinds of invariants

• Unbalanced trees only need the invariant bst
• More efficient search trees come with additional

structural invariants = balance criteria.

62



Correctness via sorted lists

Correctness proofs of (almost) all search trees
covered in this course
can be automated.

Except for the structural invariants.
Therefore we concentrate on the latter.

For details see file See HOL/Data Structures/Set Specs.thy and
T. Nipkow. Automatic Functional Correctness Proofs for Functional
Search Trees. Interactive Theorem Proving, LNCS, 2016.
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A methodological interlude:

A closer look at ADT principles
and their realization in Isabelle

Set and binary search tree as examples
(ignoring delete)
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ADT = interface + specification
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Example (Set interface)
empty :: ′s
insert :: ′a ⇒ ′s ⇒ ′s
isin :: ′s ⇒ ′a ⇒ bool

We assume that each ADT describes one

Type of Interest T

Above: T = ′s
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Model-oriented specification

Specify type T via a model = existing HOL type A
Motto: T should behave like A
Specification of “behaves like” via an
• abstraction function α :: T ⇒ A

Only some elements of T represent elements of A:
• invariant invar :: T ⇒ bool

α and invar are part of the interface,
but only for specification and verification purposes
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Example (Set ADT)
empty :: …
insert :: …
isin :: …
set :: ′s ⇒ ′a set (name arbitrary)
invar :: ′s ⇒ bool (name arbitrary)

set empty = {}
invar s =⇒ set(insert x s) = set s ∪ {x}
invar s =⇒ isin s x = (x ∈ set s)

invar empty
invar s =⇒ invar(insert x s)
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In Isabelle: locale
locale Set =
fixes empty :: ′s
fixes insert :: ′a ⇒ ′s ⇒ ′s
fixes isin :: ′s ⇒ ′a ⇒ bool
fixes set :: ′s ⇒ ′a set
fixes invar :: ′s ⇒ bool
assumes set empty = {}
assumes invar s =⇒ isin s x = (x ∈ set s)
assumes invar s =⇒ set(insert x s) = set s ∪ {x}
assumes invar empty
assumes invar s =⇒ invar(insert x s)
See HOL/Data Structures/Set Specs.thy

71



Formally, in general
To ease notation, generalize α and invar (conceptually):
α is the identity and invar is True
on types other than T

Specification of each interface function f (on T):
• f must behave like some function fA (on A):

invar t1 ∧ ... ∧ invar tn =⇒
α(f t1 ... tn) = fA (α t1) ... (α tn)
(α is a homomorphism)

• f must preserve the invariant:
invar t1 ∧ ... ∧ invar tn =⇒ invar(f t1 ... tn)
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The purpose of an ADT is to provide a context
for implementing generic algorithms
parameterized with the interface functions of the ADT.
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Example
locale Set =
fixes …
assumes …
begin

fun set of list where
set of list [] = empty |
set of list (x # xs) = insert x (set of list xs)

lemma invar(set of list xs)
by(induction xs)
(auto simp: invar empty invar insert)

end
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1 Implement interface
2 Prove specification

Example
Define functions isin and insert on type ′a tree with
invariant bst.
Now implement locale Set:
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In Isabelle: interpretation
interpretation Set
where empty = Leaf and isin = isin
and insert = insert and set = set tree and invar = bst
proof

show set tree Leaf = {} 〈proof 〉
next

fix s assume bst s
show set tree (insert x s) = set tree s ∪ {x}
〈proof 〉

next...
qed
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Interpretation of Set also yields
• function set of list :: ′a list ⇒ ′a tree
• theorem bst (set of list xs)
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Now back to search trees …
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HOL/Data_Structures/
Tree23_Set.thy

82



2-3 Trees

datatype ′a tree23 = 〈〉
| Node2 ( ′a tree23) ′a ( ′a tree23)
| Node3 ( ′a tree23) ′a ( ′a tree23) ′a ( ′a tree23)

Abbreviations:

〈l, a, r〉 ≡ Node2 l a r
〈l, a, m, b, r〉 ≡ Node3 l a m b r
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isin

isin 〈l, a, m, b, r〉 x =
(case cmp x a of

LT ⇒ isin l x
| EQ ⇒ True
| GT ⇒ case cmp x b of

LT ⇒ isin m x
| EQ ⇒ True
| GT ⇒ isin r x)

Assumes the usual ordering invariant
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Structural invariant complete
All leaves are at the same level:

complete 〈〉 = True

complete 〈l, , r〉 =
(h(l) = h(r) ∧ complete l ∧ complete r)

complete 〈l, , m, , r〉 =
(h(l) = h(m) ∧ h(m) = h(r) ∧
complete l ∧ complete m ∧ complete r)

Lemma
complete t =⇒ 2h(t) ≤ |t| + 1
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Insertion

The idea:

Leaf  Node2
Node2  Node3
Node3  overflow, pass 1 element back up
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Insertion
Two possible return values:
• tree accommodates new element

without increasing height: TI t
• tree overflows: OF l x r

datatype ′a upI = TI ( ′a tree23)
| OF ( ′a tree23) ′a ( ′a tree23)

treeI :: ′a upI ⇒ ′a tree23
treeI (TI t) = t
treeI (OF l a r) = 〈l, a, r〉
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Insertion

insert :: ′a ⇒ ′a tree23 ⇒ ′a tree23
insert x t = treeI (ins x t)

ins :: ′a ⇒ ′a tree23 ⇒ ′a upI
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Insertion

ins x 〈〉 = OF 〈〉 x 〈〉
ins x 〈l, a, r〉 =
case cmp x a of

LT ⇒ case ins x l of
TI l ′ ⇒ TI 〈l ′, a, r〉

| OF l1 b l2 ⇒ TI 〈l1, b, l2, a, r〉
| EQ ⇒ TI 〈l, a, r〉
| GT ⇒ case ins x r of

TI r ′ ⇒ TI 〈l, a, r ′〉
| OF r1 b r2 ⇒ TI 〈l, a, r1, b, r2〉
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Insertion
ins x 〈l, a, m, b, r〉 =
case cmp x a of

LT ⇒ case ins x l of
TI l ′ ⇒ TI 〈l ′, a, m, b, r〉

| OF l1 c l2 ⇒ OF 〈l1, c, l2〉 a 〈m, b, r〉
| EQ ⇒ TI 〈l, a, m, b, r〉
| GT ⇒

case cmp x b of
LT ⇒ case ins x m of

TI m ′ ⇒ TI 〈l, a, m ′, b, r〉
| OF m1 c m2 ⇒ OF 〈l, a, m1〉 c 〈m2, b, r〉

| EQ ⇒ TI 〈l, a, m, b, r〉
| GT ⇒ case ins x r of

TI r ′ ⇒ TI 〈l, a, m, b, r ′〉
| OF r1 c r2 ⇒ OF 〈l, a, m〉 b 〈r1, c, r2〉
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Insertion preserves complete

Lemma
complete t =⇒
complete (treeI (ins a t)) ∧ hI (ins a t) = h(t)
where hI :: ′a upI ⇒ nat
hI (TI t) = h(t)
hI (OF l a r) = h(l)
Proof by induction on t. Base and step automatic.

Corollary
complete t =⇒ complete (insert a t)
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Deletion

The idea:

Node3  Node2
Node2  underflow, height decreases by 1

Underflow: merge with siblings on the way up
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Deletion

Two possible return values:
• height unchanged: TD t
• height decreased by 1: UF t

datatype ′a upD = TD ( ′a tree23) | UF ( ′a tree23)

treeD (TD t) = t
treeD (UF t) = t
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Deletion

delete :: ′a ⇒ ′a tree23 ⇒ ′a tree23
delete x t = treeD (del x t)

del :: ′a ⇒ ′a tree23 ⇒ ′a upD
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Deletion

del x 〈〉 = TD 〈〉
del x 〈〈〉, a, 〈〉〉 =
(if x = a then UF 〈〉 else TD 〈〈〉, a, 〈〉〉)
del x 〈〈〉, a, 〈〉, b, 〈〉〉 = ...
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del x 〈l, a, r〉 =
(case cmp x a of

LT ⇒ node21 (del x l) a r
| EQ ⇒ let (a ′, t) = split min r in node22 l a ′ t
| GT ⇒ node22 l a (del x r))

node21 (TD t1) a t2 = TD 〈t1, a, t2〉
node21 (UF t1) a 〈t2, b, t3〉 = UF 〈t1, a, t2, b, t3〉
node21 (UF t1) a 〈t2, b, t3, c, t4〉 =
TD 〈〈t1, a, t2〉, b, 〈t3, c, t4〉〉

Analogous: node22
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Deletion preserves complete

After 13 simple lemmas:
Lemma
complete t =⇒ complete (treeD (del x t))

Corollary
complete t =⇒ complete (delete x t)
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Beyond 2-3 trees

datatype ′a tree234 =
Leaf | Node2 ... | Node3 ... | Node4 ...

Like 2-3 trees, but with many more cases

The general case:

B-trees and (a, b)-trees
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HOL/Data_Structures/
RBT_Set.thy
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Relationship to 2-3-4 trees

Idea: encode 2-3-4 trees as binary trees;
use color to express grouping

〈〉 ≈ 〈〉
〈t1,a,t2〉 ≈ 〈t1,a,t2〉

〈t1,a,t2,b,t3〉 ≈ 〈〈t1,a,t2〉,b,t3〉 or 〈t1,a,〈t2,b,t3〉〉
〈t1,a,t2,b,t3,c,t4〉 ≈ 〈〈t1,a,t2〉,b,〈t3,c,t4〉〉

Red means “I am part of a bigger node”
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Structural invariants

• The root is

Black.

• Every 〈〉 is considered Black.
• If a node is Red,

its children are Black.

• All paths from a node to a leaf have the same
number of

Black nodes.
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Red-black trees

datatype color = Red | Black

type_synonym ′a rbt = ( ′a × color) tree

Abbreviations:

R l a r ≡ Node l (a, Red) r
B l a r ≡ Node l (a, Black) r
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Color

color :: ′a rbt ⇒ color
color 〈〉 = Black
color 〈 , ( , c), 〉 = c

paint :: color ⇒ ′a rbt ⇒ ′a rbt
paint c 〈〉 = 〈〉
paint c 〈l, (a, ), r〉 = 〈l, (a, c), r〉
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Structural invariants

rbt :: ′a rbt ⇒ bool
rbt t = (invc t ∧ invh t ∧ color t = Black)

invc :: ′a rbt ⇒ bool
invc 〈〉 = True
invc 〈l, ( , c), r〉 =
((c = Red −→ color l = Black ∧ color r = Black) ∧
invc l ∧ invc r)
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Structural invariants

invh :: ′a rbt ⇒ bool
invh 〈〉 = True
invh 〈l, ( , ), r〉 = (bh(l) = bh(r) ∧ invh l ∧ invh r)

bheight :: ′a rbt ⇒ nat
bh(〈〉) = 0
bh(〈l, ( , c), 〉) =
(if c = Black then bh(l) + 1 else bh(l))

106



Logarithmic height

Lemma
rbt t =⇒ h(t) ≤ 2 ∗ log2 |t|1
Intuition: h(t) / 2 ≤ bh(t) ≤ mh(t) ≤ log2 |t|1
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Insertion
insert :: ′a ⇒ ′a rbt ⇒ ′a rbt
insert x t = paint Black (ins x t)

ins :: ′a ⇒ ′a rbt ⇒ ′a rbt
ins x 〈〉 = R 〈〉 x 〈〉
ins x (B l a r) = (case cmp x a of

LT ⇒ baliL (ins x l) a r
| EQ ⇒ B l a r
| GT ⇒ baliR l a (ins x r))

ins x (R l a r) = (case cmp x a of
LT ⇒ R (ins x l) a r

| EQ ⇒ R l a r
| GT ⇒ R l a (ins x r))
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Adjusting colors
baliL, baliR :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt
• Combine arguments l a r into tree, ideally 〈l, a, r〉
• Treat invariant violation Red-Red in l/r

baliL (R (R t1 a1 t2) a2 t3) a3 t4
= R (B t1 a1 t2) a2 (B t3 a3 t4)

baliL (R t1 a1 (R t2 a2 t3)) a3 t4
= R (B t1 a1 t2) a2 (B t3 a3 t4)

• Principle: replace Red-Red by Red-Black
• Final equation:

baliL l a r = B l a r
• Symmetric: baliR
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Preservation of invariant

After 14 simple lemmas:
Theorem
rbt t =⇒ rbt (insert x t)
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Proof in CLRS
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The while loop in lines 1–15 maintains the following three-part invariant at the
start of each iteration of the loop:

a. Node ´ is red.
b. If ´:p is the root, then ´:p is black.
c. If the tree violates any of the red-black properties, then it violates at most

one of them, and the violation is of either property 2 or property 4. If the
tree violates property 2, it is because ´ is the root and is red. If the tree
violates property 4, it is because both ´ and ´:p are red.

Part (c), which deals with violations of red-black properties, is more central to
showing that RB-INSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we use along the way to understand situations in the code. Because
we’ll be focusing on node ´ and nodes near it in the tree, it helps to know from
part (a) that ´ is red. We shall use part (b) to show that the node ´:p:p exists when
we reference it in lines 2, 3, 7, 8, 13, and 14.

Recall that we need to show that a loop invariant is true prior to the first itera-
tion of the loop, that each iteration maintains the loop invariant, and that the loop
invariant gives us a useful property at loop termination.

We start with the initialization and termination arguments. Then, as we exam-
ine how the body of the loop works in more detail, we shall argue that the loop
maintains the invariant upon each iteration. Along the way, we shall also demon-
strate that each iteration of the loop has two possible outcomes: either the pointer ´
moves up the tree, or we perform some rotations and then the loop terminates.
Initialization: Prior to the first iteration of the loop, we started with a red-black

tree with no violations, and we added a red node ´. We show that each part of
the invariant holds at the time RB-INSERT-FIXUP is called:
a. When RB-INSERT-FIXUP is called, ´ is the red node that was added.
b. If ´:p is the root, then ´:p started out black and did not change prior to the

call of RB-INSERT-FIXUP.
c. We have already seen that properties 1, 3, and 5 hold when RB-INSERT-

FIXUP is called.
If the tree violates property 2, then the red root must be the newly added
node ´, which is the only internal node in the tree. Because the parent and
both children of ´ are the sentinel, which is black, the tree does not also
violate property 4. Thus, this violation of property 2 is the only violation of
red-black properties in the entire tree.
If the tree violates property 4, then, because the children of node ´ are black
sentinels and the tree had no other violations prior to ´ being added, the
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violation must be because both ´ and ´:p are red. Moreover, the tree violates
no other red-black properties.

Termination: When the loop terminates, it does so because ´:p is black. (If ´ is
the root, then ´:p is the sentinel T:nil, which is black.) Thus, the tree does not
violate property 4 at loop termination. By the loop invariant, the only property
that might fail to hold is property 2. Line 16 restores this property, too, so that
when RB-INSERT-FIXUP terminates, all the red-black properties hold.

Maintenance: We actually need to consider six cases in the while loop, but three
of them are symmetric to the other three, depending on whether line 2 deter-
mines ´’s parent ´:p to be a left child or a right child of ´’s grandparent ´:p:p.
We have given the code only for the situation in which ´:p is a left child. The
node ´:p:p exists, since by part (b) of the loop invariant, if ´:p is the root,
then ´:p is black. Since we enter a loop iteration only if ´:p is red, we know
that ´:p cannot be the root. Hence, ´:p:p exists.
We distinguish case 1 from cases 2 and 3 by the color of ´’s parent’s sibling,
or “uncle.” Line 3 makes y point to ´’s uncle ´:p:p:right, and line 4 tests y’s
color. If y is red, then we execute case 1. Otherwise, control passes to cases 2
and 3. In all three cases, ´’s grandparent ´:p:p is black, since its parent ´:p is
red, and property 4 is violated only between ´ and ´:p.

Case 1: ´’s uncle y is red
Figure 13.5 shows the situation for case 1 (lines 5–8), which occurs when
both ´:p and y are red. Because ´:p:p is black, we can color both ´:p and y
black, thereby fixing the problem of ´ and ´:p both being red, and we can
color ´:p:p red, thereby maintaining property 5. We then repeat the while loop
with ´:p:p as the new node ´. The pointer ´ moves up two levels in the tree.
Now, we show that case 1 maintains the loop invariant at the start of the next
iteration. We use ´ to denote node ´ in the current iteration, and ´0 D ´:p:p
to denote the node that will be called node ´ at the test in line 1 upon the next
iteration.
a. Because this iteration colors ´:p:p red, node ´0 is red at the start of the next

iteration.
b. The node ´0:p is ´:p:p:p in this iteration, and the color of this node does not

change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

c. We have already argued that case 1 maintains property 5, and it does not
introduce a violation of properties 1 or 3.
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Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP. Property 4 is violated, since ´ and its
parent ´:p are both red. We take the same action whether (a) ´ is a right child or (b) ´ is a left
child. Each of the subtrees ˛, ˇ, ! , ı, and " has a black root, and each has the same black-height.
The code for case 1 changes the colors of some nodes, preserving property 5: all downward simple
paths from a node to a leaf have the same number of blacks. The while loop continues with node ´’s
grandparent ´:p:p as the new ´. Any violation of property 4 can now occur only between the new ´,
which is red, and its parent, if it is red as well.

If node ´0 is the root at the start of the next iteration, then case 1 corrected
the lone violation of property 4 in this iteration. Since ´0 is red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to ´0.
If node ´0 is not the root at the start of the next iteration, then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
of property 4 that existed at the start of this iteration. It then made ´0 red
and left ´0:p alone. If ´0:p was black, there is no violation of property 4.
If ´0:p was red, coloring ´0 red created one violation of property 4 between ´0

and ´0:p.

Case 2: ´’s uncle y is black and ´ is a right child
Case 3: ´’s uncle y is black and ´ is a left child
In cases 2 and 3, the color of ´’s uncle y is black. We distinguish the two cases
according to whether ´ is a right or left child of ´:p. Lines 10–11 constitute
case 2, which is shown in Figure 13.6 together with case 3. In case 2, node ´
is a right child of its parent. We immediately use a left rotation to transform
the situation into case 3 (lines 12–14), in which node ´ is a left child. Because
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Figure 13.6 Cases 2 and 3 of the procedure RB-INSERT-FIXUP. As in case 1, property 4 is violated
in either case 2 or case 3 because ´ and its parent ´:p are both red. Each of the subtrees ˛, ˇ, ! , and ı
has a black root (˛, ˇ, and ! from property 4, and ı because otherwise we would be in case 1), and
each has the same black-height. We transform case 2 into case 3 by a left rotation, which preserves
property 5: all downward simple paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

both ´ and ´:p are red, the rotation affects neither the black-height of nodes
nor property 5. Whether we enter case 3 directly or through case 2, ´’s uncle y
is black, since otherwise we would have executed case 1. Additionally, the
node ´:p:p exists, since we have argued that this node existed at the time that
lines 2 and 3 were executed, and after moving ´ up one level in line 10 and then
down one level in line 11, the identity of ´:p:p remains unchanged. In case 3,
we execute some color changes and a right rotation, which preserve property 5,
and then, since we no longer have two red nodes in a row, we are done. The
while loop does not iterate another time, since ´:p is now black.
We now show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, ´:p will be black upon the next test in line 1, and the loop body will not
execute again.)
a. Case 2 makes ´ point to ´:p, which is red. No further change to ´ or its color

occurs in cases 2 and 3.
b. Case 3 makes ´:p black, so that if ´:p is the root at the start of the next

iteration, it is black.
c. As in case 1, properties 1, 3, and 5 are maintained in cases 2 and 3.

Since node ´ is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.
Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation. 111



Deletion code
delete x t = paint Black (del x t)

del 〈〉 = 〈〉
del x 〈l, (a, ), r〉 =
(case cmp x a of

LT ⇒
if l 6= 〈〉 ∧ color l = Black
then baldL (del x l) a r else R (del x l) a r

| EQ ⇒
if r = 〈〉 then l
else let (a ′, r ′) = split min r

in if color r = Black then baldR l a ′ r ′

else R l a ′ r ′

| GT ⇒
if r 6= 〈〉 ∧ color r = Black
then baldR l a (del x r) else R l a (del x r))
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Deletion code
split min 〈l, (a, ), r〉 =
(if l = 〈〉 then (a, r)
else let (x, l ′) = split min l

in (x, if color l = Black then baldL l ′ a r
else R l ′ a r))

baldL (R t1 a t2) b t3 = R (B t1 a t2) b t3
baldL t1 a (B t2 b t3) = baliR t1 a (R t2 b t3)
baldL t1 a (R (B t2 b t3) c t4) =
R (B t1 a t2) b (baliR t3 c (paint Red t4))
baldL t1 a t2 = R t1 a t2
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Deletion proof

After a number of lemmas:

[[invh t; invc t]]
=⇒ invh (del x t) ∧

(color t = Red −→
bh(del x t) = bh(t) ∧ invc (del x t)) ∧
(color t = Black −→
bh(del x t) = bh(t) − 1 ∧ invc2 (del x t))

rbt t =⇒ rbt (delete x t)
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Code and proof in CLRS
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13.4 Deletion

Like the other basic operations on an n-node red-black tree, deletion of a node takes
time O.lg n/. Deleting a node from a red-black tree is a bit more complicated than
inserting a node.

The procedure for deleting a node from a red-black tree is based on the TREE-
DELETE procedure (Section 12.3). First, we need to customize the TRANSPLANT
subroutine that TREE-DELETE calls so that it applies to a red-black tree:

RB-TRANSPLANT.T; u; !/

1 if u:p == T:nil
2 T:root D !
3 elseif u == u:p: left
4 u:p: left D !
5 else u:p:right D !
6 !:p D u:p

The procedure RB-TRANSPLANT differs from TRANSPLANT in two ways. First,
line 1 references the sentinel T:nil instead of NIL. Second, the assignment to !:p in
line 6 occurs unconditionally: we can assign to !:p even if ! points to the sentinel.
In fact, we shall exploit the ability to assign to !:p when ! D T:nil.

The procedure RB-DELETE is like the TREE-DELETE procedure, but with ad-
ditional lines of pseudocode. Some of the additional lines keep track of a node y
that might cause violations of the red-black properties. When we want to delete
node ´ and ´ has fewer than two children, then ´ is removed from the tree, and we
want y to be ´. When ´ has two children, then y should be ´’s successor, and y
moves into ´’s position in the tree. We also remember y’s color before it is re-
moved from or moved within the tree, and we keep track of the node x that moves
into y’s original position in the tree, because node x might also cause violations
of the red-black properties. After deleting node ´, RB-DELETE calls an auxiliary
procedure RB-DELETE-FIXUP, which changes colors and performs rotations to
restore the red-black properties.
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RB-DELETE.T; ´/

1 y D ´
2 y-original-color D y:color
3 if ´: left == T:nil
4 x D ´:right
5 RB-TRANSPLANT.T; ´; ´:right/
6 elseif ´:right == T:nil
7 x D ´: left
8 RB-TRANSPLANT.T; ´; ´: left/
9 else y D TREE-MINIMUM.´:right/

10 y-original-color D y:color
11 x D y:right
12 if y:p == ´
13 x:p D y
14 else RB-TRANSPLANT.T; y; y:right/
15 y:right D ´:right
16 y:right:p D y
17 RB-TRANSPLANT.T; ´; y/
18 y: left D ´: left
19 y: left:p D y
20 y:color D ´:color
21 if y-original-color == BLACK
22 RB-DELETE-FIXUP.T; x/

Although RB-DELETE contains almost twice as many lines of pseudocode as
TREE-DELETE, the two procedures have the same basic structure. You can find
each line of TREE-DELETE within RB-DELETE (with the changes of replacing
NIL by T:nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT),
executed under the same conditions.

Here are the other differences between the two procedures:
! We maintain node y as the node either removed from the tree or moved within

the tree. Line 1 sets y to point to node ´ when ´ has fewer than two children
and is therefore removed. When ´ has two children, line 9 sets y to point to ´’s
successor, just as in TREE-DELETE, and y will move into ´’s position in the
tree.

! Because node y’s color might change, the variable y-original-color stores y’s
color before any changes occur. Lines 2 and 10 set this variable immediately
after assignments to y. When ´ has two children, then y ¤ ´ and node y
moves into node ´’s original position in the red-black tree; line 20 gives y the
same color as ´. We need to save y’s original color in order to test it at the
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end of RB-DELETE; if it was black, then removing or moving y could cause
violations of the red-black properties.

! As discussed, we keep track of the node x that moves into node y’s original
position. The assignments in lines 4, 7, and 11 set x to point to either y’s only
child or, if y has no children, the sentinel T:nil. (Recall from Section 12.3
that y has no left child.)

! Since node x moves into node y’s original position, the attribute x:p is always
set to point to the original position in the tree of y’s parent, even if x is, in fact,
the sentinel T:nil. Unless ´ is y’s original parent (which occurs only when ´ has
two children and its successor y is ´’s right child), the assignment to x:p takes
place in line 6 of RB-TRANSPLANT. (Observe that when RB-TRANSPLANT
is called in lines 5, 8, or 14, the second parameter passed is the same as x.)
When y’s original parent is ´, however, we do not want x:p to point to y’s orig-
inal parent, since we are removing that node from the tree. Because node y will
move up to take ´’s position in the tree, setting x:p to y in line 13 causes x:p
to point to the original position of y’s parent, even if x D T:nil.

! Finally, if node y was black, we might have introduced one or more violations
of the red-black properties, and so we call RB-DELETE-FIXUP in line 22 to
restore the red-black properties. If y was red, the red-black properties still hold
when y is removed or moved, for the following reasons:
1. No black-heights in the tree have changed.
2. No red nodes have been made adjacent. Because y takes ´’s place in the

tree, along with ´’s color, we cannot have two adjacent red nodes at y’s new
position in the tree. In addition, if y was not ´’s right child, then y’s original
right child x replaces y in the tree. If y is red, then x must be black, and so
replacing y by x cannot cause two red nodes to become adjacent.

3. Since y could not have been the root if it was red, the root remains black.
If node y was black, three problems may arise, which the call of RB-DELETE-

FIXUP will remedy. First, if y had been the root and a red child of y becomes the
new root, we have violated property 2. Second, if both x and x:p are red, then
we have violated property 4. Third, moving y within the tree causes any simple
path that previously contained y to have one fewer black node. Thus, property 5
is now violated by any ancestor of y in the tree. We can correct the violation
of property 5 by saying that node x, now occupying y’s original position, has an
“extra” black. That is, if we add 1 to the count of black nodes on any simple path
that contains x, then under this interpretation, property 5 holds. When we remove
or move the black node y, we “push” its blackness onto node x. The problem is
that now node x is neither red nor black, thereby violating property 1. Instead,
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node x is either “doubly black” or “red-and-black,” and it contributes either 2 or 1,
respectively, to the count of black nodes on simple paths containing x. The color
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is
doubly black). In other words, the extra black on a node is reflected in x’s pointing
to the node rather than in the color attribute.

We can now see the procedure RB-DELETE-FIXUP and examine how it restores
the red-black properties to the search tree.
RB-DELETE-FIXUP.T; x/

1 while x ¤ T:root and x:color == BLACK
2 if x == x:p: left
3 w D x:p:right
4 if w:color == RED
5 w:color D BLACK // case 1
6 x:p:color D RED // case 1
7 LEFT-ROTATE.T; x:p/ // case 1
8 w D x:p:right // case 1
9 if w: left:color == BLACK and w:right:color == BLACK

10 w:color D RED // case 2
11 x D x:p // case 2
12 else if w:right:color == BLACK
13 w: left:color D BLACK // case 3
14 w:color D RED // case 3
15 RIGHT-ROTATE.T; w/ // case 3
16 w D x:p:right // case 3
17 w:color D x:p:color // case 4
18 x:p:color D BLACK // case 4
19 w:right:color D BLACK // case 4
20 LEFT-ROTATE.T; x:p/ // case 4
21 x D T:root // case 4
22 else (same as then clause with “right” and “left” exchanged)
23 x:color D BLACK

The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4. Exercises
13.4-1 and 13.4-2 ask you to show that the procedure restores properties 2 and 4,
and so in the remainder of this section, we shall focus on property 1. The goal of
the while loop in lines 1–22 is to move the extra black up the tree until
1. x points to a red-and-black node, in which case we color x (singly) black in

line 23;
2. x points to the root, in which case we simply “remove” the extra black; or
3. having performed suitable rotations and recolorings, we exit the loop.
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Within the while loop, x always points to a nonroot doubly black node. We
determine in line 2 whether x is a left child or a right child of its parent x:p. (We
have given the code for the situation in which x is a left child; the situation in
which x is a right child—line 22—is symmetric.) We maintain a pointer w to
the sibling of x. Since node x is doubly black, node w cannot be T:nil, because
otherwise, the number of blacks on the simple path from x:p to the (singly black)
leaf w would be smaller than the number on the simple path from x:p to x.

The four cases2 in the code appear in Figure 13.7. Before examining each case
in detail, let’s look more generally at how we can verify that the transformation
in each of the cases preserves property 5. The key idea is that in each case, the
transformation applied preserves the number of black nodes (including x’s extra
black) from (and including) the root of the subtree shown to each of the subtrees
˛; ˇ; : : : ; !. Thus, if property 5 holds prior to the transformation, it continues to
hold afterward. For example, in Figure 13.7(a), which illustrates case 1, the num-
ber of black nodes from the root to either subtree ˛ or ˇ is 3, both before and after
the transformation. (Again, remember that node x adds an extra black.) Similarly,
the number of black nodes from the root to any of " , ı, ", and ! is 2, both be-
fore and after the transformation. In Figure 13.7(b), the counting must involve the
value c of the color attribute of the root of the subtree shown, which can be either
RED or BLACK. If we define count.RED/ D 0 and count.BLACK/ D 1, then the
number of black nodes from the root to ˛ is 2 C count.c/, both before and after
the transformation. In this case, after the transformation, the new node x has color
attribute c, but this node is really either red-and-black (if c D RED) or doubly black
(if c D BLACK). You can verify the other cases similarly (see Exercise 13.4-5).

Case 1: x’s sibling w is red
Case 1 (lines 5–8 of RB-DELETE-FIXUP and Figure 13.7(a)) occurs when node w,
the sibling of node x, is red. Since w must have black children, we can switch the
colors of w and x:p and then perform a left-rotation on x:p without violating any
of the red-black properties. The new sibling of x, which is one of w’s children
prior to the rotation, is now black, and thus we have converted case 1 into case 2,
3, or 4.

Cases 2, 3, and 4 occur when node w is black; they are distinguished by the
colors of w’s children.

2As in RB-INSERT-FIXUP, the cases in RB-DELETE-FIXUP are not mutually exclusive.
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Case 2: x’s sibling w is black, and both of w’s children are black
In case 2 (lines 10–11 of RB-DELETE-FIXUP and Figure 13.7(b)), both of w’s
children are black. Since w is also black, we take one black off both x and w,
leaving x with only one black and leaving w red. To compensate for removing
one black from x and w, we would like to add an extra black to x:p, which was
originally either red or black. We do so by repeating the while loop with x:p as
the new node x. Observe that if we enter case 2 through case 1, the new node x
is red-and-black, since the original x:p was red. Hence, the value c of the color
attribute of the new node x is RED, and the loop terminates when it tests the loop
condition. We then color the new node x (singly) black in line 23.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black
Case 3 (lines 13–16 and Figure 13.7(c)) occurs when w is black, its left child
is red, and its right child is black. We can switch the colors of w and its left
child w: left and then perform a right rotation on w without violating any of the
red-black properties. The new sibling w of x is now a black node with a red right
child, and thus we have transformed case 3 into case 4.

Case 4: x’s sibling w is black, and w’s right child is red
Case 4 (lines 17–21 and Figure 13.7(d)) occurs when node x’s sibling w is black
and w’s right child is red. By making some color changes and performing a left ro-
tation on x:p, we can remove the extra black on x, making it singly black, without
violating any of the red-black properties. Setting x to be the root causes the while
loop to terminate when it tests the loop condition.

Analysis
What is the running time of RB-DELETE? Since the height of a red-black tree of n
nodes is O.lg n/, the total cost of the procedure without the call to RB-DELETE-
FIXUP takes O.lg n/ time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4
lead to termination after performing a constant number of color changes and at
most three rotations. Case 2 is the only case in which the while loop can be re-
peated, and then the pointer x moves up the tree at most O.lg n/ times, performing
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O.lg n/ time and per-
forms at most three rotations, and the overall time for RB-DELETE is therefore
also O.lg n/. 115



Source of code

Insertion:
Okasaki’s Purely Functional Data Structures

Deletion partly based on:
Stefan Kahrs. Red Black Trees with Types.
J. Functional Programming. 1996.
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9 Abstract Data Types

10 2-3 Trees
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AVL Trees
[Adelson-Velskii & Landis 62]

• Every node 〈l, ,r〉 must be balanced:
|h(l) − h(r)| ≤ 1

• Verified Isabelle implementation:
HOL/Data Structures/AVL Set.thy
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Weight-Balanced Trees
[Nievergelt & Reingold 72,73]

• Parameter: balance factor 0 < α ≤ 0.5
• Every node 〈l, ,r〉 must be balanced:

α ≤ |l|1/(|l|1 + |r|1) ≤ 1−α

• Insertion and deletion: single and double rotations
depending on subtle numeric conditions

• Nievergelt and Reingold incorrect
• Mistakes discovered and corrected by [Blum &

Mehlhorn 80] and [Hirai & Yamamoto 2011]
• Verified implementation

in Isabelle’s Archive of Formal Proofs.
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AA trees
[Arne Andersson 93, Ragde 14]

• Simulation of 2-3 trees by binary trees
〈t1,a,t2,b,t3〉  〈t1,a,〈t2,b,t3〉〉

• Height field (or single bit) to distinguish
single from double node

• Code short but opaque
• 4 bugs in delete in [Ragde 14]:

non-linear pattern; going down wrong subtree;
missing function call; off by 1
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AA trees
[Arne Andersson 93, Ragde 14]

After corrections, the proofs:
• Code relies on tricky pre- and post-conditions

that need to be found
• Structural invariant preservation

requires most of the work
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Scapegoat trees
[Anderson 89, Igal & Rivest 93]

Central idea:
Don’t rebalance every time,

Rebuild when the tree gets “too unbalanced”

• Tricky: amortized logarithmic complexity analysis
• Verified implementation

in Isabelle’s Archive of Formal Proofs.
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One by one (Union)

Let c(x) = cost of adding 1 element to set of size x

Cost of adding m elements to a set of n elements:

c(n) + · · ·+ c(n + m − 1)

=⇒ choose m ≤ n =⇒ smaller into bigger

If c(x) = log2 x =⇒
Cost = O(m ∗ log2(n + m)) = O(m ∗ log2 n)

Similar for intersection and difference.
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• We can do better than O(m ∗ log2 n)
• This section:

A parallel divide and conquer approach
• Cost: Θ(m ∗ log2(

n
m + 1))

• Works for many kinds of balanced trees
• For ease of presentation: use concrete type tree
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Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with ′b-augmented trees:

( ′a × ′b) tree

We work with this type of trees without committing to
any particular kind of balancing schema.
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Just join

Can synthesize all BST interface functions from just one
function:

join l a r ≈ Node l (a, ) r + rebalance

Thus join determines the balancing schema
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Just join

Given join :: tree ⇒ ′a ⇒ tree ⇒ tree
(where tree abbreviates ( ′a, ′b) tree), implement
union :: tree ⇒ tree ⇒ tree
inter :: tree ⇒ tree ⇒ tree
diff :: tree ⇒ tree ⇒ tree
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union t1 t2 =
(if t1 = 〈〉 then t2
else if t2 = 〈〉 then t1

else case t1 of
〈l1, (a, b), r1〉 ⇒

let (l2, x, r2) = split a t2;
l ′ = union l1 l2;
r ′ = union r1 r2

in join l ′ a r ′)
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split :: tree ⇒ ′a ⇒ tree × bool × tree
split 〈〉 = (〈〉, False, 〈〉)
split x 〈l, (a, ), r〉 =
(case cmp x a of

LT ⇒
let (l1, b, l2) = split x l
in (l1, b, join l2 a r)

| EQ ⇒ (l, True, r)
| GT ⇒

let (r1, b, r2) = split x r
in (join l a r1, b, r2))
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inter t1 t2 =
(if t1 = 〈〉 then 〈〉
else if t2 = 〈〉 then 〈〉

else case t1 of
〈l1, (a, x), r1〉 ⇒

let (l2, b, r2) = split a t2;
l ′ = inter l1 l2;
r ′ = inter r1 r2

in if b then join l ′ a r ′

else join2 l ′ r ′)
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join2 :: tree ⇒ tree ⇒ tree
join2 l r =
(if r = 〈〉 then l
else let (m, r ′) = split min r in join l m r ′)

split min :: tree ⇒ ′a × tree
split min 〈l, (a, ), r〉 =
(if l = 〈〉 then (a, r)
else let (m, l ′) = split min l in (m, join l ′ a r))
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diff t1 t2 =
(if t1 = 〈〉 then 〈〉
else if t2 = 〈〉 then t1

else case t2 of
〈l2, (a, b), r2〉 ⇒

let (l1, x, r1) = split a t1;
l ′ = diff l1 l2;
r ′ = diff r1 r2

in join2 l ′ r ′)
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insert and delete

insert x t = (let (l, b, r) = split x t in join l x r)

delete x t = (let (l, b, r) = split x t in join2 l r)
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Specification of join and inv

• set tree (join l a r) = set tree l ∪ {a} ∪ set tree r
• bst 〈l, (a, b), r〉 =⇒ bst (join l a r)

Also required: structural invariant inv:
• inv 〈〉
• inv 〈l, (a, b), r〉 =⇒ inv l ∧ inv r
• [[inv l; inv r]] =⇒ inv (join l a r)

Locale context for def of union etc
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Specification of union, inter, diff
ADT/Locale Set2 = extension of locale Set with
• union, inter, diff :: ′s ⇒ ′s ⇒ ′s
• [[invar s1; invar s2]]

=⇒ set (union s1 s2) = set s1 ∪ set s2
• [[invar s1; invar s2]] =⇒ invar (union s1 s2)

• …inter …
• …diff …

We focus on union.

See HOL/Data Structures/Set Specs.thy
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Correctness lemmas
for union etc code

In the context of join specification:
• bst t2 =⇒

set tree (union t1 t2) = set tree t1 ∪ set tree t2
• [[bst t1; bst t2]] =⇒ bst (union t1 t2)

• [[inv t1; inv t2]] =⇒ inv (union t1 t2)

Proofs automatic (more complex for inter and diff)

Implementation of locale Set2:
interpretation Set2 where union = union …
and set = set tree and invar = (λt. bst t ∧ inv t)
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HOL/Data_Structures/
Set2_Join.thy

143



13 Union, Intersection, Difference on BSTs
Correctness
Join for Red-Black Trees

144



join l a r — The idea

Assume l is “smaller” than r :
• Descend along the left spine of r

until you find a subtree t of the same “size” as l.
• Replace t by 〈l,a,t〉.
• Rebalance on the way up.
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join l x r =
(if bheight r < bheight l
then paint Black (joinR l x r)
else if bheight l < bheight r

then paint Black (joinL l x r) else B l x r)

joinL l x r =
(if bheight r ≤ bheight l then R l x r
else case r of

〈l ′, (x ′, Red), r ′〉 ⇒ R (joinL l x l ′) x ′ r ′

| 〈l ′, (x ′, Black), r ′〉 ⇒ baliL (joinL l x l ′) x ′ r ′)

Need to store black height in each node
for logarithmic complexity
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Thys/Set2 Join RBT.thy
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Literature

The idea of “just join”:
Stephen Adams. Efficient Sets — A Balancing Act.
J. Functional Programming, volume 3, number 4, 1993.

The precise analysis:
Guy E. Blelloch, D. Ferizovic, Y. Sun.
Just Join for Parallel Ordered Sets.
ACM Symposium on Parallelism in Algorithms and
Architectures 2016.
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Trie
[Fredkin, CACM 1960]

Name: reTRIEval
• Tries are search trees indexed by lists
• Tries are tree-shaped DFAs
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Example Trie

{ a, an, can, car, cat }

n

a

n r t

a

c
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14 Tries and Patricia Tries
Tries via Functions
Binary Tries and Patricia Tries
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HOL/Data_Structures/
Trie_Fun.thy
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Trie

datatype ′a trie = Nd bool ( ′a ⇒ ′a trie option)

Function update notation:
f(a := b) = (λx. if x = a then b else f x)
f(a 7→ b) = f(a := Some b)

Next: Implementation of ADT Set
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empty

empty = Nd False (λ . None)
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isin

isin (Nd b m) [] = b

isin (Nd b m) (k # xs) = (case m k of
None ⇒ False

| Some t ⇒ isin t xs)
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insert

insert [] (Nd b m) = Nd True m
insert (x # xs) (Nd b m) =
let s = case m x of

None ⇒ empty
| Some t ⇒ t

in Nd b (m(x 7→ insert xs s))
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delete

delete [] (Nd b m) = Nd False m
delete (x # xs) (Nd b m) =
Nd b (case m x of

None ⇒ m
| Some t ⇒ m(x 7→ delete xs t))

Does not shrink trie — exercise!
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Correctness:
Abstraction function

set :: ′a trie ⇒ ′a list set
set t = {xs. isin t xs}

Invariant is True
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Correctness theorems

• set empty = {}
• isin t xs = (xs ∈ set t)
• set (insert xs t) = set t ∪ {xs}
• set (delete xs t) = set t − {xs}

No lemmas required
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Abstraction function via isin

set t = {xs. isin t xs}

• Trivial definition
• Reusing code (isin) may complicate proofs.
• Separate abstract mathematical definition may

simplify proofs
Also possible for some other ADTs, e.g. for Map:
lookup :: ′t ⇒ ( ′a ⇒ ′b option)
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14 Tries and Patricia Tries
Tries via Functions
Binary Tries and Patricia Tries
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HOL/Data_Structures/
Tries_Binary.thy
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Trie

datatype trie = Lf | Nd bool (trie × trie)

Auxiliary functions on pairs:
sel2 :: bool ⇒ ′a × ′a ⇒ ′a
sel2 b (a1, a2) = (if b then a2 else a1)

mod2 :: ( ′a ⇒ ′a) ⇒ bool ⇒ ′a × ′a ⇒ ′a × ′a
mod2 f b (a1, a2) = (if b then (a1, f a2) else (f a1, a2))
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empty

empty = Lf
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isin

isin Lf ks = False

isin (Nd b lr) ks = (case ks of
[] ⇒ b

| k # x ⇒ isin (sel2 k lr) x)
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insert

insert [] Lf = Nd True (Lf, Lf)

insert [] (Nd b lr) = Nd True lr

insert (k # ks) Lf =
Nd False (mod2 (insert ks) k (Lf, Lf))

insert (k # ks) (Nd b lr) =
Nd b (mod2 (insert ks) k lr)
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delete

delete ks Lf = Lf
delete ks (Nd b lr) =
case ks of
[] ⇒ node False lr

| k # ks ′ ⇒ node b (mod2 (delete ks ′) k lr)

Shrink trie if possible:
node b lr = (if ¬ b ∧ lr = (Lf, Lf) then Lf else Nd b lr)
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Correctness of implementation

Abstraction function:

set trie t = {xs. isin t xs}

• isin (insert xs t) ys = (xs = ys ∨ isin t ys)
=⇒ set trie (insert xs t) = set trie t ∪ {xs}

• isin (delete xs t) ys = (xs 6= ys ∧ isin t ys)
=⇒ set trie (delete xs t) = set trie t − {xs}
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From tries to Patricia tries

s t

r

a

c
 car

s t
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Patricia trie

datatype trieP = LfP
| NdP (bool list) bool (trieP × trieP)
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isinP

isinP LfP ks = False

isinP (NdP ps b lr) ks =
(let n = length ps
in if ps = take n ks

then case drop n ks of
[] ⇒ b

| k # ks ′ ⇒ isinP (sel2 k lr) ks ′

else False)
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Splitting lists

lcp xs ys = (zs, xs ′, ys ′)
iff zs is the longest common prefix of xs and ys
and xs ′/ys ′ is the remainder of xs/ys
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insertP

insertP ks LfP = NdP ks True (LfP, LfP)
insertP ks (NdP ps b lr) =
case lcp ks ps of
(qs, [], []) ⇒ NdP ps True lr

| (qs, [], p # ps ′) ⇒
let t = NdP ps ′ b lr
in NdP qs True (if p then (LfP, t) else (t, LfP))

| (qs, k # ks ′, []) ⇒ NdP ps b (mod2 (insertP ks ′) k lr)
| (qs, k # ks ′, p # ps ′) ⇒

let tp = NdP ps ′ b lr; tk = NdP ks ′ True (LfP, LfP)
in NdP qs False (if k then (tp, tk) else (tk, tp))

174



deleteP

deleteP ks LfP = LfP
deleteP ks (NdP ps b lr) =
(case lcp ks ps of
(qs, ks ′, p#ps ′) ⇒ NdP ps b lr |
(qs, k#ks ′, []) ⇒

nodeP ps b (mod2 (deleteP ks ′) k lr) |
(qs, [], []) ⇒ nodeP ps False lr)
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Stepwise data refinement

View trieP as an implementation (“refinement”) of trie

Type Abstraction function

bool list set
↑ set trie

trie
↑ abs trieP

trieP

=⇒ Modular correctness proof of trieP
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abs trieP :: trieP ⇒ trie

abs trieP LfP = Lf

abs trieP (NdP ps b (l, r)) =
prefix trie ps (Nd b (abs trieP l, abs trieP r))

prefix trie :: bool list ⇒ trie ⇒ trie

177



Correctness of trieP w.r.t. trie
• isinP t ks = isin (abs trieP t) ks
• abs trieP (insertP ks t) = insert ks (abs trieP t)
• abs trieP (deleteP ks t) = delete ks (abs trieP t)

isin (prefix trie ps t) ks =
(ps = take (length ps) ks ∧ isin t (drop (length ps) ks))
prefix trie ks (Nd True (Lf, Lf)) = insert ks Lf
insert ps (prefix trie ps (Nd b lr)) = prefix trie ps (Nd True lr)
insert (ks @ ks ′) (prefix trie ks t) = prefix trie ks (insert ks ′ t)
prefix trie (ps @ qs) t = prefix trie ps (prefix trie qs t)
lcp ks ps = (qs, ks ′, ps ′) =⇒
ks = qs @ ks ′ ∧ ps = qs @ ps ′ ∧ (ks ′ 6= [] ∧ ps ′ 6= [] −→ hd ks ′ 6= hd ps ′)
(prefix trie xs t = Lf) = (xs = [] ∧ t = Lf)
(abs trieP t = Lf) = (t = LfP)
delete xs (prefix trie xs (Nd b (l, r))) =
(if (l, r) = (Lf, Lf) then Lf else prefix trie xs (Nd False (l, r)))
delete (xs @ ys) (prefix trie xs t) =
(if delete ys t = Lf then Lf else prefix trie xs (delete ys t))
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Correctness of trieP w.r.t.
bool list set

Define set trieP = set trie ◦ abs trieP
=⇒ Overall correctness by trivial composition of
correctness theorems for trie and trieP

Example:
set trieP (insertP xs t) = set trieP t ∪ {xs}
follows directly from
abs trieP (insertP ks t) = insert ks (abs trieP t)
set trie (insert xs t) = set trie t ∪ {xs}
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Chapter 9

Priority Queues
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Priority queue informally
Collection of elements with priorities

Operations:
• empty
• emptiness test
• insert
• get element with minimal priority
• delete element with minimal priority

We focus on the priorities:
element = priority
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Priority queues are multisets

The same element can be contained multiple times
in a priority queue

=⇒
The abstract view of a priority queue is a multiset
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Interface of implementation

The type of elements (= priorities) ′a is a linear order

An implementation of a priority queue of elements of
type ′a must provide
• An implementation type ′q
• empty :: ′q
• is empty :: ′q ⇒ bool
• insert :: ′a ⇒ ′q ⇒ ′q
• get min :: ′q ⇒ ′a
• del min :: ′q ⇒ ′q
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More operations

• merge :: ′q ⇒ ′q ⇒ ′q
Often provided

• decrease key/priority
A bit tricky in functional setting
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Correctness of implementation

A priority queue represents a multiset of priorities.
Correctness proof requires:

Abstraction function: mset :: ′q ⇒ ′a multiset
Invariant: invar :: ′q ⇒ bool
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Correctness of implementation
Must prove invar q =⇒
mset empty = {#}
is empty q = (mset q = {#})
mset (insert x q) = mset q + {#x#}
mset q 6= {#} =⇒ get min q = Min mset (mset q)
mset q 6= {#} =⇒
mset (del min q) = mset q − {#get min q#}

invar empty
invar (insert x q)
invar (del min q)
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Terminology

A binary tree is a heap if for every subtree
the root is ≤ all elements in that subtree.

heap 〈〉 = True
heap 〈l, m, r〉 =
((∀ x∈set tree l ∪ set tree r. m ≤ x) ∧
heap l ∧ heap r)

The term “heap” is frequently used synonymously with
“priority queue”.

189



Priority queue via heap

• empty = 〈〉
• is empty h = (h = 〈〉)
• get min 〈 , a, 〉 = a
• Assume we have merge
• insert a t = merge 〈〈〉, a, 〈〉〉 t
• del min 〈l, a, r〉 = merge l r

190



Priority queue via heap

A naive merge:
merge t1 t2 = (case (t1,t2) of
(〈〉, ) ⇒ t2 |
( , 〈〉) ⇒ t1 |
(〈l1,a1,r1〉, 〈l2,a2,r2〉) ⇒

if a1 ≤ a2 then 〈merge l1 r1, a1, t2〉
else 〈t1, a2, merge l2 r2〉

Challenge: how to maintain some kind of balance
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HOL/Data_Structures/
Leftist_Heap.thy
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Leftist tree informally
In a leftist tree, the minimum height of every left child is
≥ the minimum height of its right sibling.
=⇒ m.h. = length of right spine

Merge descends along the right spine.
Thus m.h. bounds number of steps.

If m.h. of right child gets too large: swap with left child.
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Implementation type

type_synonym ′a lheap = ( ′a × nat) tree
Abstraction function:
mset tree :: ′a lheap ⇒ ′a multiset
mset tree 〈〉 = {#}
mset tree 〈l, (a, ), r〉 =
{#a#} + mset tree l + mset tree r
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Leftist tree

ltree :: ′a lheap ⇒ bool
ltree 〈〉 = True
ltree 〈l, ( , n), r〉 =
(mh(r) ≤ mh(l) ∧ n = mh(r) + 1 ∧ ltree l ∧ ltree r)

mht :: ′a lheap ⇒ nat
mht 〈〉 = 0
mht 〈 , ( , n), 〉 = n
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Leftist heap invariant

invar h = (heap h ∧ ltree h)
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merge
Principle: descend on the right
merge 〈〉 t = t
merge t 〈〉 = t
merge (〈l1, (a1, ), r1〉 =: t1) (〈l2, (a2, ), r2〉 =: t2) =
(if a1 ≤ a2 then node l1 a1 (merge r1 t2)
else node l2 a2 (merge t1 r2))

node :: ′a lheap ⇒ ′a ⇒ ′a lheap ⇒ ′a lheap
node l a r =
(let mhl = mht l; mhr = mht r
in if mhr ≤ mhl then 〈l, (a, mhr + 1), r〉

else 〈r, (a, mhl + 1), l〉)
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merge

merge (〈l1, (a1, n1), r1〉 =: t1)
(〈l2, (a2, n2), r2〉 =: t2) =
(if a1 ≤ a2 then node l1 a1 (merge r1 t2)
else node l2 a2 (merge t1 r2))

Function merge terminates because

? size t1 + size t2

decreases with every recursive call.
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Functional correctness proofs
including preservation of invar

Straightforward
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Logarithmic complexity
Correlation of rank and size:
Lemma 2mh(t) ≤ |t|1
Complexity measures T merge, T insert T del min:
count calls of merge.
Lemma [[ltree l; ltree r]]
=⇒ T merge l r ≤ mh(l) + mh(r) + 1
Corollary [[ltree l; ltree r]]
=⇒ T merge l r ≤ log2 |l|1 + log2 |r|1 + 1
Corollary
ltree t =⇒ T insert x t ≤ log2 |t|1 + 2
Corollary
ltree t =⇒ T del min t ≤ 2 ∗ log2 |t|1 201



Can we avoid the height info in each node?
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Archive of Formal Proofs

https://www.isa-afp.org/entries/Priority_
Queue_Braun.shtml
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What is a Braun tree?
braun :: ′a tree ⇒ bool
braun 〈〉 = True
braun 〈l, x, r〉 =
((|l| = |r| ∨ |l| = |r| + 1) ∧ braun l ∧ braun r)

1

2

4 6

3

5 7

Lemma braun t =⇒ 2h(t) ≤ 2 ∗ |t| + 1
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Idea of invariant maintenance

braun 〈〉 = True
braun 〈l, x, r〉 =
((|l| = |r| ∨ |l| = |r| + 1) ∧ braun l ∧ braun r)

Let t = 〈l, x, r〉. Assume braun t
Add element: to r, then swap subtrees: t ′ = 〈r ′, x, l〉
To prove braun t ′: |l| ≤ |r ′| ∧ |r ′| ≤ |l| + 1

Delete element: from l, then swap subtrees: t ′ = 〈r, x, l ′〉
To prove braun t ′: |l ′| ≤ |r| ∧ |r| ≤ |l ′| + 1
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Priority queue implementation

Implementation type: ′a tree

Invariants: heap and braun

No merge — insert and del min defined explicitly
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insert

insert :: ′a ⇒ ′a tree ⇒ ′a tree
insert a 〈〉 = 〈〈〉, a, 〈〉〉
insert a 〈l, x, r〉 =
(if a < x then 〈insert x r, a, l〉 else 〈insert a r, x, l〉)

Correctness and preservation of invariant straightforward.
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del min

del min :: ′a tree ⇒ ′a tree
del min 〈〉 = 〈〉
del min 〈〈〉, x, r〉 = 〈〉
del min 〈l, x, r〉 =
(let (y, l ′) = del left l in sift down r y l ′)

1 Delete leftmost element y
2 Sift y from the root down

Reminiscent of heapsort, but not quite …
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del left

del left :: ′a tree ⇒ ′a × ′a tree
del left 〈〈〉, x, r〉 = (x, r)
del left 〈l, x, r〉 =
(let (y, l ′) = del left l in (y, 〈r, x, l ′〉))
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sift down
sift down :: ′a tree ⇒ ′a ⇒ ′a tree ⇒ ′a tree
sift down 〈〉 a = 〈〈〉, a, 〈〉〉
sift down 〈〈〉, x, 〉 a 〈〉 =
(if a ≤ x then 〈〈〈〉, x, 〈〉〉, a, 〈〉〉
else 〈〈〈〉, a, 〈〉〉, x, 〈〉〉)

sift down (〈l1, x1, r1〉 =: t1) a (〈l2, x2, r2〉 =: t2) =
if a ≤ x1 ∧ a ≤ x2 then 〈t1, a, t2〉
else if x1 ≤ x2 then 〈sift down l1 a r1, x1, t2〉

else 〈t1, x2, sift down l2 a r2〉

Maintains braun
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Functional correctness proofs
for del min

Many lemmas, mostly straightforward
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Logarithmic complexity

Running time of insert, del left and sift down (and
therefore del min) bounded by height

Remember: braun t =⇒ 2h(t) ≤ 2 ∗ |t| + 1
=⇒
Above running times logarithmic in size
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Source of code

Based on code from
L.C. Paulson. ML for the Working Programmer. 1996
based on code from Chris Okasaki.
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Sorting with priority queue
pq [] = empty
pq (x#xs) = insert x (pq xs)

mins q =
(if is empty q then []
else get min h # mins (del min h))

sort pq = mins ◦ pq

Complexity of sort: O(n log n)
if all priority queue functions have complexity O(log n)
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HOL/Data_Structures/
Binomial_Heap.thy
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Numerical method

Idea: only use trees ti of size 2i

Example
To store (in binary) 11001 elements: [t0,0,0,t3,t4]

Merge ≈ addition with carry
Needs function to combine two trees of size 2i

into one tree of size 2i+1
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Binomial tree
datatype ′a tree =

Node (rank: nat) (root: ′a) ( ′a tree list)

Invariant: Node of rank r has children [tr−1, . . . , t0]
of ranks [r−1, . . . , 0]

btree (Node r x ts) =
((∀ t∈set ts. btree t) ∧ map rank ts = rev [0..<r])

Lemma
btree t =⇒ |t| = 2rank t
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Combining two trees

How to combine two trees of rank i
into one tree of rank i+1

link (Node r x1 ts1 =: t1) (Node r ′ x2 ts2 =: t2) =
(if x1 ≤ x2 then Node (r + 1) x1 (t2 # ts1)
else Node (r + 1) x2 (t1 # ts2))

220



Binomial heap
Use sparse representation for binary numbers:
[t0,0,0,t3,t4] represented as [ (0,t0), (3,t3),(4,t4) ]

type_synonym ′a heap = ′a tree list

Remember: tree contains rank

Invariant:
invar ts =
((∀ t∈set ts. bheap t) ∧ sorted wrt (<) (map rank ts))
bheap t = (btree t ∧ heap t)
heap (Node x ts) = (∀ t∈set ts. heap t ∧ x ≤ root t)
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Inserting a tree into a heap

Intuition: propagate a carry
Precondition:
Rank of inserted tree ≤ ranks of trees in heap

ins tree t [] = [t]
ins tree t1 (t2 # ts) =
(if rank t1 < rank t2 then t1 # t2 # ts
else ins tree (link t1 t2) ts)
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merge

merge ts1 [] = ts1
merge [] ts2 = ts2
merge (t1 # ts1 =: h1) (t2 # ts2 =: h2) =
(if rank t1 < rank t2 then t1 # merge ts1 h2
else if rank t2 < rank t1 then t2 # merge h1 ts2

else ins tree (link t1 t2) (merge ts1 ts2))

Intuition: Addition of binary numbers
Note: Handling of carry after recursive call
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Get/delete minimum element
All trees are min-heaps.
Smallest element may be any root node:

ts 6= [] =⇒ get min ts = Min (set (map root ts))

Similar:
get min rest :: ′a tree list ⇒ ′a tree × ′a tree list
Returns tree with minimal root, and remaining trees

del min ts =
(case get min rest ts of

(Node r x ts1, ts2) ⇒ merge (rev ts1) ts2)

Why rev? Rank decreasing in ts1 but increasing in ts2
224



Complexity

Recall: btree t =⇒ |t| = 2rank t

=⇒ length of heap logarithmic in number of elements:
invar ts =⇒ length ts ≤ log2 (|ts| + 1)
Complexity of operations: linear in length of heap
Proofs straightforward?
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Complexity of merge

merge (t1 # ts1 =: h1) (t2 # ts2 =: h2) =
(if rank t1 < rank t2 then t1 # merge ts1 h2
else if rank t2 < rank t1 then t2 # merge h1 ts2

else ins tree (link t1 t2) (merge ts1 ts2))

Complexity of ins tree: T ins tree t ts ≤ length ts + 1
A call merge t1 t2 (where length ts1 = length ts2 = n)
can lead to calls of ins tree on lists of length 1, …, n.∑

∈ O(n2)
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Complexity of merge

merge (t1 # ts1 =: h1) (t2 # ts2 =: h2) =
(if rank t1 < rank t2 then t1 # merge ts1 h2
else if rank t2 < rank t1 then t2 # merge h1 ts2

else ins tree (link t1 t2) (merge ts1 ts2))

Relate time and length of input/output:
T ins tree t ts + length (ins tree t ts) = 2 + length ts
T merge ts1 ts2 + length (merge ts1 ts2)
≤ 2 ∗ (length ts1 + length ts2) + 1
Yields desired linear bound!
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Sources

The inventor of the binomial heap:
Jean Vuillemin.
A Data Structure for Manipulating Priority Queues.
CACM, 1978.

The functional version:
Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.
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Priority queues so far

insert, del min (and merge)
have logarithmic complexity
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Skew Binomial Heap

Similar to binomial heap, but involving also
skew binary numbers:
d1 . . . dn represents

∑n
i=1 di ∗ (2i+1 − 1)

where di ∈ {0, 1, 2}
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Complexity
Skew binomial heap:

insert in time O(1)
del min and merge still O(log n)

Fibonacci heap (imperative!):

insert and merge in time O(1)
del min still O(log n)

Every operation in time O(1)?
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Puzzle

Design a functional queue
with (worst case) constant time enq and deq functions
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Chapter 10

Amortized Complexity
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Example

n increments of a binary counter starting with 0

• WCC of one increment? O(log2 n)
• WCC of n increments? O(n ∗ log2 n)
• O(n ∗ log2 n) is too pessimistic!
• Every second increment is cheap and compensates

for the more expensive increments
• Fact: WCC of n increments is O(n)

WCC = worst case complexity
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The problem

WCC of individual operations
may lead to overestimation of

WCC of sequences of operations
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Amortized analysis
Idea:

Try to determine the average cost of each operation
(in the worst case!)

Use cheap operations to pay for expensive ones

Method:
• Cheap operations pay extra (into a “bank

account”), making them more expensive
• Expensive operations withdraw money from the

account, making them cheaper
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Bank account = Potential

• The potential (“credit”) is implicitly “stored” in the
data structure.

• Potential Φ :: data-structure ⇒ non-neg. number
tells us how much credit is stored in a data structure

• Increase in potential =
deposit to pay for later expensive operation

• Decrease in potential =
withdrawal to pay for expensive operation
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Back to example: counter

Increment:
• Actual cost: 1 for each bit flip
• Bank transaction:

• pay in 1 for final 0 → 1 flip
• take out 1 for each 1 → 0 flip

=⇒ increment has amortized cost 2 = 1+1
Formalization via potential:
Φ counter = the number of 1’s in counter
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Data structure
Given an implementation:
• Type τ
• Operation(s) f :: τ ⇒ τ

(may have additional parameters)
• Initial value: init :: τ

(function “empty”)
Needed for complexity analysis:
• Time/cost: T f :: τ ⇒ num

(num = some numeric type
nat may be inconvenient)

• Potential Φ :: τ ⇒ num (creative spark!)
Need to prove: Φ s ≥ 0 and Φ init = 0
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Amortized and real cost
Sequence of operations: f1, …, fn
Sequence of states:

s0 := init, s1 := f1 s0, …, sn := fn sn−1

Amortized cost := real cost + potential difference
Ai+1 := T fi+1 si + Φ si+1 − Φ si

=⇒
Sum of amortized costs ≥ sum of real costs∑n
i=1 Ai =

∑n
i=1 (T fi si−1 + Φ si − Φ si−1)

= (
∑n

i=1 T fi si−1) + Φ sn − Φ init
≥

∑n
i=1 T fi si−1
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Verification of amortized cost

For each operation f:
provide an upper bound for its amortized cost

A f :: τ ⇒ num

and prove

T f s + Φ(f s) − Φ s ≤ A f s
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Back to example: counter
incr :: bool list ⇒ bool list
incr [] = [True]
incr (False # bs) = True # bs
incr (True # bs) = False # incr bs
init = []

Φ bs = length (filter id bs)

Lemma
T incr bs + Φ (incr bs) − Φ bs = 2
Proof by induction
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Proof obligation summary

• Φ s ≥ 0
• Φ init = 0
• For every operation f :: τ ⇒ ... ⇒ τ :

T f s x + Φ(f s x) − Φ s ≤ A f s x
If the data structure has an invariant invar:
assume precondition invar s

If f takes 2 arguments of type τ :
T f s1 s2 x + Φ(f s1 s2 x) − Φ s1 − Φ s2 ≤ A f s1 s2 x
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Warning: real time

Amortized analysis unsuitable for real time applications:

Real running time for individual calls
may be much worse than amortized time
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Warning: single threaded
Amortized analysis is only correct for single threaded

uses of the data structure.
Single threaded = no value is used more than once

Otherwise:
let counter = 0;

bad = increment counter 2n − 1 times;
= incr bad;
= incr bad;
= incr bad;

...
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Warning: observer functions
Observer function: does not modify data structure
=⇒ Potential difference = 0
=⇒ amortized cost = real cost
=⇒ Must analyze WCC of observer functions
This makes sense because

Observer functions do not consume their arguments!

Legal: let bad = create unbalanced data structure
with high potential;

= observer bad;
= observer bad;

...
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Fact

Can reverse [x1,. . . ,xn] onto ys in n steps:
([x1, x2, x3, . . . , xn], ys)

→ ([x2, x3, . . . , xn], x1 # ys)
→ ([x3, . . . , xn], x2 # x1 # ys)
...
→ ([], xn # . . . # x1 # ys)
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The problem
with (front, rear) queues

• Only amortized linear complexity of enq and deq
• Problem: ([], rear) requires reversal of rear
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Solution

• Do not wait for ([], rear)
• Compute new front front @ rev rear

early and slowly
• In parallel with enq and deq calls
• Using a ‘copy’ of front and rear

“shadow queue”
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Solution
When to start? When |front| = n and |rear| = n+1
Two phases:
front n→ rev front

↘n

front @ rev rear
↗

rear n+1→ rev rear

Must finish before original front is empty.
⇒ Must take two steps in every enq and deq call
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Complication

Calls of deq remove elements from the original front

Cannot easily remove them from the modified copy of
front

Solution:
• Remember how many elements have been removed
• Better: how many elements are still valid
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Example
enq: ([1..5], [11..6], Idle)
→ ([1..5], [], R (0, [1..5],[], [11..6],[])
→2 R (2, [3..5],[2..1], [9..6],[10..11])
deq: ([2..5], [], R (1, [3..5],[2..1], [9..6],[10..11])
→2 R (3, [5],[4..1], [7..6],[8..11])
enq: ([2..5], [12], R (3, [5],[4..1], [7..6],[8..11])
→ R (4, [],[5..1], [6],[7..11])
→ A (4, [5..1], [6..11])
deq: ([3..5], [12], A (3, [5..1], [6..11])
→2 A (1, [3..1], [4..11])
deq: ([4..5], [12], A (0, [3..1], [4..11])
→ Done [4..11])
→ ([4..11], [12], Idle)
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The shadow queue

datatype ′a status =
Idle |
Rev (nat) ( ′a list) ( ′a list) ( ′a list) ( ′a list) |
App (nat) ( ′a list) ( ′a list) |
Done ( ′a list)
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Shadow step

exec :: ′a status ⇒ ′a status
exec Idle = Idle
exec (Rev ok (x # f) f ′ (y # r) r ′)
= Rev (ok + 1) f (x # f ′) r (y # r ′)

exec (Rev ok [] f ′ [y] r ′) = App ok f ′ (y # r ′)

exec (App (ok + 1) (x # f ′) r ′) = App ok f ′ (x # r ′)

exec (App 0 f ′ r ′) = Done r ′

exec (Done v) = Done v
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Dequeue from shadow queue

invalidate :: ′a status ⇒ ′a status
invalidate Idle = Idle
invalidate (Rev ok f f ′ r r ′) = Rev (ok − 1) f f ′ r r ′

invalidate (App (ok + 1) f ′ r ′) = App ok f ′ r ′

invalidate (App 0 f ′ (x # r ′)) = Done r ′

invalidate (Done v) = Done v
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The whole queue

record ′a queue = front :: ′a list
lenf :: nat
rear :: ′a list
lenr :: nat
status :: ′a status
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enq and deq

enq x q =
check (q(|rear := x # rear q, lenr := lenr q + 1|))

deq q =
check
(q(|lenf := lenf q − 1, front := tl (front q),

status := invalidate (status q)|))
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check q =
(if lenr q ≤ lenf q then exec2 q
else let newstate =

Rev 0 (front q) [] (rear q) []
in exec2

(q(|lenf := lenf q + lenr q,
status := newstate,
rear := [], lenr := 0|)))

exec2 q = (case exec (exec q) of
Done fr ⇒ q(|status = Idle, front = fr|) |
newstatus ⇒ q(|status = newstatus|))
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Correctness

The proof is
• easy because all functions are non-recursive

(=⇒ constant running time!)
• tricky because of invariant
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status invariant

inv st (Rev ok f f ′ r r ′) =
(|f| + 1 = |r| ∧ |f ′| = |r ′| ∧ ok ≤ |f ′|)
inv st (App ok f ′ r ′) = (ok ≤ |f ′| ∧ |f ′| < |r ′|)
inv st Idle = True
inv st (Done ) = True
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Queue invariant
invar q =
(lenf q = |front list q| ∧
lenr q = |rev (rear q)| ∧
lenr q ≤ lenf q ∧
(case status q of

Rev ok f f ′ r r ′ ⇒
2 ∗ lenr q ≤ |f ′| ∧
ok 6= 0 ∧ 2 ∗ |f| + ok + 2 ≤ 2 ∗ |front q|

| App ok f r ⇒
2 ∗ lenr q ≤ |r| ∧ ok + 1 ≤ 2 ∗ |front q|

| ⇒ True) ∧
(∃ rest. front list q = front q @ rest) ∧
(@ fr. status q = Done fr) ∧ inv st (status q))
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Queue invariant

front list q =
(case status q of

Idle ⇒ front q
| Rev ok f f ′ r r ′ ⇒ rev (take ok f ′) @ f @ rev r @ r ′

| App ok f ′ x ⇒ rev (take ok f ′) @ x
| Done f ⇒ f)
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Inventors

Robert Hood and Robert Melville.
Real-Time Queue Operation in Pure LISP.
Information Processing Letters, 1981.
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Generalization

Real-time double-ended queue

Inventors: Hood (1982), Chuang and Goldberg (1993)
Verifiers: Toth and Nipkow (2023)
4500 lines of Isabelle (Hood-Melville queue: 800)
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A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del min
have amortized logarithmic complexity.

Functions insert and del min are defined via merge
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Implementation type

Ordinary binary trees

Invariant: heap
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merge

merge 〈〉 t = t
merge h 〈〉 = h
Swap subtrees when descending:
merge (〈l1, a1, r1〉 =: t1) (〈l2, a2, r2〉 =: t2) =
(if a1 ≤ a2 then 〈merge t2 r1, a1, l1〉
else 〈merge t1 r2, a2, l2〉)

Function merge terminates because …?
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merge

Very similar to leftist heap but
• subtrees are always swapped
• no size information needed
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Functional correctness proofs

Straightforward
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Archive of Formal Proofs

https://www.isa-afp.org/theories/amortized_
complexity/#Skew_Heap_Analysis
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Logarithmic amortized complexity

Theorem
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ 3 ∗ log2 (|t1|1 + |t2|1) + 1
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Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of right heavy nodes on left spine:
lrh 〈〉 = 0
lrh 〈l, , r〉 = rh l r + lrh l

Lemma
2lrh t ≤ |t| + 1

Corollary
lrh t ≤ log2 |t|1

284



Towards the proof
Right heavy:
rh l r = (if |l| < |r| then 1 else 0)

Number of not right heavy nodes on right spine:
rlh 〈〉 = 0
rlh 〈l, , r〉 = 1 − rh l r + rlh r

Lemma
2rlh t ≤ |t| + 1

Corollary
rlh t ≤ log2 |t|1
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Potential
The potential is the number of right heavy nodes:
Φ 〈〉 = 0
Φ 〈l, , r〉 = Φ l + Φ r + rh l r

merge descends on the right
=⇒ right heavy nodes are bad

Lemma
T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
by(induction t1 t2 rule: merge.induct)(auto)

286



Node-Node case
Let t1 = 〈l1, a1, r1〉, t2 = 〈l2, a2, r2〉.
Case a1 ≤ a2. Let m = merge t2 r1

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
= T merge t2 r1 + 1 + Φ m + Φ l1 + rh m l1
− Φ t1 − Φ t2

= T merge t2 r1 + 1 + Φ m + rh m l1
− Φ r1 − rh l1 r1 − Φ t2

≤ lrh m + rlh t2 + rlh r1 + rh m l1 + 2 − rh l1 r1
by IH

= lrh m + rlh t2 + rlh t1 + rh m l1 + 1
= lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
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Main proof

T merge t1 t2 + Φ (merge t1 t2) − Φ t1 − Φ t2
≤ lrh (merge t1 t2) + rlh t1 + rlh t2 + 1
≤ log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x,y > 0
= 3 ∗ log2 (|t1|1 + |t2|1) + 1
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insert and del min

Easy consequences:
Lemma
T insert a t + Φ (insert a t) − Φ t
≤ 3 ∗ log2 (|t|1 + 2) + 1

Lemma
T del min t + Φ (del min t) − Φ t
≤ 3 ∗ log2 (|t|1 + 2) + 1

289



Sources

The inventors of skew heaps:
Daniel Sleator and Robert Tarjan.
Self-adjusting Heaps.
SIAM J. Computing, 1986.

The formalization is based on
Anne Kaldewaij and Berry Schoenmakers.
The Derivation of a Tighter Bound for Top-down Skew
Heaps. Information Processing Letters, 1991.
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A splay tree is a self-adjusting binary search tree.

Functions isin, insert and delete
have amortized logarithmic complexity.
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Definition (splay)
Become wider or more separated.

Example
The river splayed out into a delta.
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Splay tree
Implementation type = binary tree

Key operation splay a:
1 Search for a ending up at x

where x = a or x is a leaf node.
2 Move x to the root of the tree by rotations.

Derived operations isin/insert/delete a :
1 splay a
2 Perform isin/insert/delete action
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Key ideas

Move to root

Double rotations
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Zig-zig
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Zig-zag
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Zig-zig and zig-zag

Zig-zig 6= two single rotations

Zig-zag = two single rotations

300



Functional definition

splay :: ′a ⇒ ′a tree ⇒ ′a tree
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Zig-zig and zig-zag

[[x < b; x < c; AB 6= 〈〉]]
=⇒ splay x 〈〈AB, b, C〉, c, D〉 =

(case splay x AB of
〈A, a, B〉 ⇒ 〈A, a, 〈B, b, 〈C, c, D〉〉〉)

[[x < c; c < a; BC 6= 〈〉]]
=⇒ splay c 〈〈A, x, BC〉, a, D〉 =

(case splay c BC of
〈B, b, C〉 ⇒ 〈〈A, x, B〉, b, 〈C, a, D〉〉)
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Some base cases

x < b =⇒ splay x 〈〈A, x, B〉, b, C〉 = 〈A, x, 〈B, b, C〉〉

x < a =⇒
splay x 〈〈〈〉, a, A〉, b, B〉 = 〈〈〉, a, 〈A, b, B〉〉
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Functional correctness proofs

Automatic
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23 Splay Tree
Algorithm
Amortized Analysis
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complexity/#Splay_Tree_Analysis
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Potential

Sum of logarithms of the size of all nodes:
Φ 〈〉 = 0
Φ 〈l, a, r〉 = ϕ 〈l, a, r〉 + Φ l + Φ r
where ϕ t = log2 (|t| + 1)

Amortized complexity of splay:

A splay a t = T splay a t + Φ (splay a t) − Φ t
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Analysis of splay
Theorem
[[bst t; 〈l, a, r〉 ∈ subtrees t]]
=⇒ A splay a t ≤ 3 ∗ (ϕ t − ϕ 〈l, a, r〉) + 1
Corollary
[[bst t; x ∈ set tree t]]
=⇒ A splay x t ≤ 3 ∗ (ϕ t − 1) + 1
Corollary bst t =⇒ A splay x t ≤ 3 ∗ ϕ t + 1
Lemma
[[t 6= 〈〉; bst t]]
=⇒ ∃ x ′∈set tree t.

splay x ′ t = splay x t ∧
T splay x ′ t = T splay x t
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insert
Definition
insert x t =
(if t = 〈〉 then 〈〈〉, x, 〈〉〉
else case splay x t of

〈l, a, r〉 ⇒ case cmp x a of
LT ⇒ 〈l, x, 〈〈〉, a, r〉〉

| EQ ⇒ 〈l, a, r〉
| GT ⇒ 〈〈l, a, 〈〉〉, x, r〉)

Counting only the cost of splay:
Lemma
bst t =⇒
T insert x t + Φ (insert x t) − Φ t ≤ 4 ∗ ϕ t + 2
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delete
Definition
delete x t =
(if t = 〈〉 then 〈〉
else case splay x t of

〈l, a, r〉 ⇒
if x 6= a then 〈l, a, r〉
else if l = 〈〉 then r

else case splay max l of
〈l ′, m, r ′〉 ⇒ 〈l ′, m, r〉)

Lemma
bst t =⇒
T delete a t + Φ (delete a t) − Φ t ≤ 6 ∗ ϕ t + 2
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Remember

Amortized analysis is only correct for single threaded
uses of a data structure.

Otherwise:

let counter = 0;
bad = increment counter 2n − 1 times;
= incr bad;
= incr bad;
= incr bad;

...
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isin :: ′a tree ⇒ ′a ⇒ bool

Single threaded =⇒ isin t a eats up t

Otherwise:

let bad = build unbalanced splay tree;
= isin bad a;
= isin bad a;
= isin bad a;

...
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Solution 1:
isin :: ′a tree ⇒ ′a ⇒ bool × ′a tree

Observer function returns new data structure:
Definition
isin t a =
(let t ′ = splay a t in (case t ′ of

〈〉 ⇒ False
| 〈l, x, r〉 ⇒ a = x,
t ′))
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Solution 2:
isin = splay; is root

Client uses splay before calling is root:
Definition
is root :: ′a ⇒ ′a tree ⇒ bool
is root x t = (case t of

〈〉 ⇒ False
| 〈l, a, r〉 ⇒ x = a)

May call is root t multiple times (with the same t!)
because is root takes constant time
=⇒ is root t does not eat up t
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isin

Splay trees have an imperative flavour and are a bit
awkward to use in a purely functional language
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Sources

The inventors of splay trees:
Daniel Sleator and Robert Tarjan.
Self-adjusting Binary Search Trees. J. ACM, 1985.

The formalization is based on
Berry Schoenmakers. A Systematic Analysis of Splaying.
Information Processing Letters, 1993.
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20 Amortized Complexity

21 Hood Melville Queue

22 Skew Heap

23 Splay Tree

24 Pairing Heap

25 More Verified Data Structures and Algorithms
(in Isabelle/HOL)
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https://www.isa-afp.org/entries/Pairing_
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Implementation type

datatype ′a heap = Empty | Hp ′a ( ′a heap list)

Heap invariant:
pheap Empty = True
pheap (Hp x hs) =
(∀ h∈set hs. (∀ y∈#mset heap h. x ≤ y) ∧ pheap h)

Also: Empty must only occur at the root
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insert

insert x h = merge (Hp x []) h

merge h Empty = h
merge Empty h = h
merge (Hp x hsx =: hx) (Hp y hsy =: hy) =
(if x < y then Hp x (hy # hsx) else Hp y (hx # hsy))

Like function link for binomial heaps
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del min

del min Empty = Empty
del min (Hp x hs) = pass2 (pass1 hs)

pass1 (h1 # h2 # hs) = merge h1 h2 # pass1 hs
pass1 hs = hs

pass2 [] = Empty
pass2 (h # hs) = merge h (pass2 hs)

321



Fusing pass2 ◦ pass1

merge pairs [] = Empty
merge pairs [h] = h
merge pairs (h1 # h2 # hs) =
merge (merge h1 h2) (merge pairs hs)

Lemma
pass2 (pass1 hs) = merge pairs hs
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Functional correctness proofs

Straightforward
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24 Pairing Heap
Amortized Analysis
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Analysis
Analysis easier (more uniform) if a pairing heap is viewed
as a binary tree:

homs :: ′a heap list ⇒ ′a tree
homs [] = 〈〉
homs (Hp x hs1 # hs2) = 〈homs hs1, x, homs hs2〉

hom :: ′a heap ⇒ ′a tree
hom Empty = 〈〉
hom (Hp x hs) = 〈homs hs, x, 〈〉〉

Potential function same as for splay trees
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Verified:

The functions insert, del min and merge all have
O(log2 n) amortized complexity.

These bounds are not tight.
Better amortized bounds in the literature:
insert ∈ O(1), del min ∈ O(log2 n), merge ∈ O(1)
The exact complexity is still open.
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Sources

The inventors of the pairing heap:
M. Fredman, R. Sedgewick, D. Sleator and R. Tarjan.
The Pairing Heap: A New Form of Self-Adjusting Heap.
Algorithmica, 1986.

The functional version:
Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.
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20 Amortized Complexity

21 Hood Melville Queue

22 Skew Heap

23 Splay Tree

24 Pairing Heap

25 More Verified Data Structures and Algorithms
(in Isabelle/HOL)
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More trees

Huffman Trees
Finger Trees
B Trees
k-d Trees
Optimal BSTs
Priority Search Trees
Treaps
…
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Graph algorithms

Floyd-Warshall
Dijkstra Dijkstra
Maximum Network Flow
Strongly Connected Components
Kruskal Kruskal
Prim Prim
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Algorithms
Knuth-Morris-Pratt
Median of Medians
Approximation Algorithms
FFT
Gauss-Jordan
Simplex
QR-Decomposition
Smith Normal Form
Probabilistic Primality Testing
…
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Dynamic programming

• Start with recursive function
• Automatic translation to memoized version incl.

correctness theorem
• Applications

• Optimal binary search tree
• Minimum edit distance
• Bellman-Ford (SSSP)
• CYK
• …
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Infrastructure

Refinement Frameworks by Lammich:
Abstract specification
 functional program
 imperative program

using a library of collection types
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Model Checkers

• SPIN-like LTL Model Checker:
Esparza, Lammich, Neumann, Nipkow, Schimpf,
Smaus 2013

• SAT Certificate Checker:
Lammich 2017; beats unverified standard tool
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Mostly in the Archive of Formal Proofs
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