Functional Data Structures
with Isabelle/HOL

Tobias Nipkow

Department of Computer Science
Technical University of Munich

2024-3-24

Chapter 1

Introduction

What the course is about

Data Structures and Algorithms
for Functional Programming Languages

The code is not enough!

Formal Correctness and Complexity Proofs
with the Proof Assistant Isabelle

Proof Assistants

® You give the structure of the proof
® The PA checks the correctness of each step

Government health warnings:

Time consuming
Potentially addictive
Undermines your naive trust in informal proofs

Terminology

Formal = machine-checked
Verification = formal correctness proof

Two landmark verifications

C compiler Operating system
Competitive with gcc -01 microkernel (L4)
S

Xavier Leroy Gerwin Klein (& Co)
INRIA Paris NICTA Sydney
using Coq using Isabelle

Overview of course

® \Week 1-5: Introduction to Isabelle

® Rest of semester: Search trees, priority queues, etc
and their (amortized) complexity

What we expect from you

Functional programming experience with an
ML /Haskell-like language

First course in data structures and algorithms
First course in discrete mathematics

You will not survive this course without doing the
time-consuming homework

Part |

Isabelle

Chapter 2

Programming and Proving

@ Overview of Isabelle/HOL

@® Type and function definitions

© Induction Heuristics

O Simplification

12

Notation

Implication associates to the right:
A=— B=— (C means A— (B= ()

Similarly for other arrows: =, —

A ... A,

7 means A — - ---— A, — B

14

@ Overview of Isabelle/HOL

15

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
® For the moment: only term = term,
eg. 1+2=4
e |ater: A, V, —,V, ...

16

@ Overview of Isabelle/HOL
Types and terms

17

Basic syntax:

T

()

bool | nat | int | ...
‘a | b] ...

T =T

T X T

T list

T set

Types

base types

type variables
functions

pairs (ascii: *)
lists

sets

user-defined types

18

Basic syntax:

(%)

t =
|
| tt
|
|

. t

Terms

constant or variable (identifier)
function application

function abstraction

lots of syntactic sugar

A-calculus

19

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:

t :: 7 means “tis a well-typed term of type 7".

t::7T1 = To U Ty
tu: 7o

20

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (z::nat)

21

Currying

Thou shalt Curry your functions

e Curried: fuumTi = 190 =T
e Tupled: f:: 71 X 79 = 7

22

Predefined syntactic sugar

e Infix: +, —, *, #, Q, ...
o Mixfix: if then else , case of, ...

Prefix binds more strongly than infix:

V foty = (fo)+y £ fz+y)

Enclose if and case in parentheses:
! (if _ then __ else) I

23

Theory = Isabelle Module

Syntax: theory MyTh
imports 17... T,
begin
(definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh.thy

T;: names of imported theories. Import transitive.
Usually: imports Main

24

Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

25

@ Overview of Isabelle/HOL

Interface

26

isabelle jedit

e Based on jEdit editor

® Processes Isabelle text automatically
when editing . thy files (like modern Java IDEs)

27

Overview_Demo.thy

28

@ Overview of Isabelle/HOL

By example: types bool, nat and list

29

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: =

30

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :’a, +: Ta='a="a

You need type annotations: 1 :: nat, = + (y::nat)
unless the context is unambiguous: Suc z

31

Nat_Demo.thy

32

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Sucm by IH

33

Type 'a list
Lists of elements of type 'a
datatype ’‘a list = Nil | Cons'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o 1 # xs= Cons x zs:
list with first element z (“head”) and rest xs (“tail”)

° [1’17 ...,Z’n]le#--- Tn # H

34

Structural Induction for lists

To prove that P(zs) for all lists xs, prove
o P(]) and

e for arbitrary but fixed z and s,
P(zs) implies P(z#1xs).

P([) Nz xs. P(xs) = P(a#xs)
P(zs)

35

List_Demo.thy

36

An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on s.
e Case Nil: app (app Nil ys) zs = app ys zs =
app Nil (app ys zs) holds by definition of app.
e Case Cons x xs: We assume app (app xs ys) zs =
app s (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons z (app (app s ys) zs) by definition of app
= Cons z (app zs (app ys zs)) by IH
= app (Cons z xs) (app ys zs) by definition of app

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: xs @ ys (append), length, map, filter
set 2 'a list = 'a set, ...

38

@ Overview of Isabelle/HOL

Summary

39

e datatype defines (possibly) recursive data types.

e fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.

40

Proof methods

e induction performs structural induction on some
variable (if the type of the variable is a datatype).

® auto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):
“=""Is used only from left to right!

41

Proofs

General schema:

lemma name: "..."

apply (...)
apply (...)
done

If the lemma is suitable as a simplification rule:

lemma namel[simp]: "..."

42

Top down proofs

Command

sorry
“completes” any proof.
Allows top down development:

Assume lemma first, prove it later.

43

1/\$1

I ...

A
B

Tp

The proof state

z,. A= B

fixed local variables
local assumption(s)
actual (sub)goal

44

Multiple assumptions

[Ay; ... ; Ay] = B
abbreviates
Al — ... —= A, — B

. =~ “and

”

45

@ Overview of Isabelle/HOL

Numeric Types

46

Numeric types: nat, int, real

Need conversion functions (inclusions):

mt o nat = int
real :: nat = real
real _of int : int = real

If you need type real,
import theory Complex Main instead of Main

47

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(With theory C’omplex_Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples

(i:int) + (ninat) ~> @+ int n
((n:nat) + n) :: real ~~ real(n+n), real n + real n

48

Numeric types: nat, int, real

Coercion in the other direction:

nat :: int = nat
floor :: real = int
ceiling :: real = int

49

Overloaded arithmetic operations

Basic arithmetic functions are overloaded:

+, — *x:a="a="a

—2la="a

Division on nat and int:

div, mod :: 'a = 'a = 'a

Division on real: / :: 'a = 'a = a
Exponentiation with nat: ~:: 'a = nat = 'a
Exponentiation with real: powr :: 'a = 'a = 'a
Absolute value: abs :: 'a = 'a

Above all binary operators are infix

50

@® Type and function definitions

51

@® Type and function definitions
Type definitions

52

datatype — the general case

datatype (Odl, Ce ,Ckn)t Cl Tl Tim

o Types: Cj::Tip = = Tin, = (Q1,...,0p)t
e Distinctness: C; ... # C; ... ifi#]
o Injectivity: (C; z1...2,, = C; 1...Yp,) =

(11 = A Ao, = Yn,)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

53

Case expressions

Like in functional languages:

(case t of paty = t, | ... | pat, = t,)

Complicated patterns mean complicated proofs!

Need () in context

54

Tree Demo.thy

55

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:

fun lookup :: (‘a x 'b) list = 'a = 'b option where
lookup [] = None |

lookup ((a, b) # ps) © =
(if a = z then Some b else lookup ps)

56

@® Type and function definitions

Function definitions

57

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

No pattern matching, just fz; ... z, =

58

The danger of nontermination

How about fz=faz+ 1 7

All functions in HOL must be total |

59

Key features of fun

Pattern-matching over datatype constructors
Order of equations matters

Termination must be provable automatically
by size measures

Proves customized induction schema

60

Example: separation

fun sep :: 'a = 'a list = 'a list where

sep a (cfyttes) = o # a # sep a (y#zs) |

Sep a rsS = IS

61

primrec

A restrictive version of fun

Means primitive recursive

Most functions are primitive recursive

Frequently found in Isabelle theories
The essence of primitive recursion:

f(0) = ... no recursion
f(Suc n) =...f(n)...

g([]) = ... no recursion

(
g(z#as) = ...g(xs)...

62

© Induction Heuristics

63

Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number 7 of f
if f is defined by recursion on argument number ¢

64

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (a#zs) ys =

lemma itrev zs [| = rev zs

65

Induction_Demo.thy

Generalisation

66

Generalisation

® Replace constants by variables

® Generalize free variables

® by arbitrary in induction proof
® (or by universal quantifier in formula)

67

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

68

Computation Induction

Example

fun div2 :: nat = nat where
di2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) An. P(n) = P(Suc(Suc n))

P(m)

69

Computation Induction
If f:: 7= 7 is defined by fun, a special induction

schema is provided to prove P(z) for all z :: 7:
for each defining equation

fle) = .. f(r)...f(m)...
prove P(e) assuming P(ry),..., P(ry).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

70

How to apply f.induct

ffom=-=7m=>r1"
(induction a1 ... a, rule: finduct)

Heuristic:
e there should be acall fa; ... a, in your goal
e ideally the a; should be variables.

71

Induction_Demo.thy

Computation Induction

72

O Simplification

73

Simplification means . ..

Using equations [= r from left to right

As long as possible
Terminology: equation ~» simplification rule

Simplification = (Term) Rewriting

74

An example

~~
[\
~—

—
w
~—

—~
IS
N

O+n = n
. (Suc m)+mn = Suc (m+ n)
Equations. (Suc m < Sucn) = (m<n)
(0<m) = True
0+ SucO0 < Suc0—+=x (
Suc 0 < Suc0+zx
Rewriting: Suc 0 < Suc (0+ x)
0 < 0+z

True

—
~—

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

p(z) = flz) = g(z)
We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

n<m=(n< Sucm)= True YES
Suc n < m= (n< m)= True NO

7

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)

Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype

® additional lemmas eq; ... egq,
® assumptions P ... P,
Variations:
® (simp ... del: ...) removes simp-lemmas

® add and del are optional

78

auto versus Simp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies simp and more

auto can also be modified:
(auto simp add: ... simp del: ...)

79

Rewriting with definitions

Definitions (definition) must be used explicitly:
(simp add: f def ...)

f is the function whose definition is to be unfolded.

80

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype ¢ t.split

81

Splitting pairs with simp /auto

How to replace

P (let (z, y) = tin u x y)
or
P (case t of (z, y) = u z ¥)
by
Vey t=(z,y) — P (uzy)

Proof method: (simp split: prod.split)

82

Simp_Demo.thy

83

Chapter 3

Case Study: Binary Search Trees

85

Preview: sets

Type: a set
Operations: a € A, AU B, ...
Bounded quantification: VacA. P

Proof method auto knows (a little) about sets.

86

The (binary) tree library

imports "HOL-Library.Tree"
(File: isabelle/src/HOL/Library/Tree.thy)

datatype 'a tree = Leaf | Node ('a tree) 'a ('a tree)

Abbreviations:

Leaf
Node |l a r

(l, a, 1)

87

The (binary) tree library

Size = number of nodes:
size 2 'a tree = nat

size () = 0
size (I, _, r) = size | + size r + 1

Height:

height :: 'a tree = nat
height () =0
height (I, _, vy = max (height [) (height r) + 1

88

The (binary) tree library

The set of elements in a tree:
set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, a, ry = set_tree [U {a} U set_tree r

Inorder listing:
inorder :: 'a tree = 'a list

inorder () = |]
inorder (I, x, r) = inorder | Q [2] @ fnorder r

89

The (binary) tree library

Binary search tree invariant:
bst :: 'a tree = bool

bst () = True

bst (I, a, 1) =

(Vzeset_tree l. © < a) A
(Vz€set_tree . a < x) A bst I N\ bst)

For any type 'a ?

90

Isabelle’s type classes

A type class is defined by

® a set of required functions (the interface)

® and a set of axioms about those functions
Example: class linorder: linear orders with <, <

A type belongs to some class if

e the interface functions are defined on that type
e and satisfy the axioms of the class (proof needed!)

Notation: 7 :: ' means type 7 belongs to class C

Example: bst :: (‘a :: linorder) tree = bool
— 'a must be a linear order!

91

Case study

BST_Demo.thy

92

This was easy!

Because we chose easy problems.

Difficult problems need more than induction+ auto.

We need more automation
and a more expressive proof language

93

Chapter 4

Logic and Proof
Beyond Equality

@ Logical Formulas

@ Proof Automation

@ Single Step Proofs

95

@ Logical Formulas

96

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
~AABVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA
Ve. Pz AN Qzr = Vx.(P:zt/\Qx)

Input syntax: «— (same precedence as —)

97

Variable binding convention:
Vey Pxy =

Similarly for 4 and \.

Vo.Vy Pxy

98

Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

' PAVZ Qz ~ PANz Q2) |

99

M <>Il>/l_l_l<i

Mathematical symbols

and their ascii representations

\<forall> ALL
\<exists> EX
\<lambda> %
-—>

<->

/\ &
\/ I
\<not> ~
\<noteqg> ~=

Sets over type 'a

'a set

{}, {e, ..,en}
ec A, ACB

AUB, AnB A-B —-A
{z. P} where z is a variable

€ \<in> :

C \<subsetegq> <=
U \<union> Un
N \<inter> Int

@ Proof Automation

102

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck

® highly incomplete

e Extensible with new simp-rules
Exception: auto acts on all subgoals

103

fastforce

rewriting, logic, sets, relations and a bit of arithmetic.
incomplete but better than auto.

Succeeds or fails

Extensible with new simp-rules

104

blast

A complete proof search procedure for FOL ...
... but (almost) without “="

Covers logic, sets and relations

Succeeds or fails

Extensible with new deduction rules

105

Sledgehammer

Architecture:

Goal
& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,
® sometimes it doesn't.

Do you feel lucky?

L Automatic Theorem Provers

107

by(proof-method)

~
~Y

apply(proof-method)
done

108

Auto Proof Demo.thy

109

@ Proof Automation
Automating Arithmetic

110

Linear formulas
Only:
variables
numbers
number * variable
+' —
= <, <
- A, V, —, —

Examples
Linear: 3xzrz+Hxy<z—zr<z2

Nonlinear: =z < z* x

111

Extended linear formulas

Also allowed:

min, max

even, odd

t div n, t mod n where nis a number
conversion functions

nat, floor, ceiling, abs

112

Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to prove arithmetic formulas.
® Succeeds or fails
® Decision procedure for extended linear formulas

e Nonlinear subterms are viewed as (new) variables.
Example: x < xx x4+ fy isviewed as < u + v

113

Automatic proof

of arithmetic formulas
by (simp add: algebra__simps)

® The lemmas list algebra_simps helps to simplify
arithmetic formulas

® |t contains associativity, commutativity and
distributivity of + and .

® This may prove the formula, may make it simpler,
or may make it unreadable.

114

Automatic proof

of arithmetic formulas
by (simp add: field simps)

® The lemmas list field simps extends
algebra__simps by rules for /

e Can only cancel common terms in a quotient,
eg.xxy/ (zx2),if z# 0 can be proved.

115

Numerals
Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation z ~ n is defined by Suc-recursion on n.
Therefore =~ 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral__eq Suc

Example
simp add: numeral eq Suc rewrites x ~ 2 to 7 * x

116

Auto_Proof Demo.thy

Arithmetic

117

@ Single Step Proofs

118

Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.

119

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These ?-variables can later be instantiated:
e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False
e By unification:
unifying 2P A ?2¢) with a=b A False
sets 7P to a=b and ?(Q) to Fulse.

120

Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [41; ... ; 4,] = A

to subgoal ... = (.
e Unify A and C
e Replace C'with n new subgoals A; ... A,

apply(rule xyz)
“Backchaining”

121

Typical backwards rules

P ?Q _

2P A 70 conjl

?P:> QQ Nz. 7P x

P— 2Q impI Vi 9P 2 alll

P= ?Q 7Q = 7P
P = 720

iffI

They are known as introduction rules
because they introduce a particular connective.

122

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s
is the theorem obtained by proving A with s.
Example: theorem refl: %t = ¢t

conjI[OF refl[of "a"]]

~

0= a=aN ?Q

123

The general case:

If ris a theorem [Ay; ...; 4,] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t

conjI[OF refllof "a"] refllof "b"]]

~

a=aANb=1»

124

From now on:

7 mostly suppressed on slides

125

Single Step_Demo.thy

126

—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A,] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

Phrase theorems like this [Ay;...; 4,] = A
not like this Ay A ... N A, — A

127

Chapter 5

Isar: A Language for
Structured Proofs

@ Isar by example

© Proof patterns

@ Streamlining Proofs

@ Proof by Cases and Induction

129

® unreadable
® hard to maintain
® do not scale

Apply scripts

No structure!

130

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration

131

A typical Isar proof

proof
assume formula,
have formula; by simp

have formula, by blast
show formula, , by ...
ged

proves formulay, = formula,,

132

Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step = fix variables (A\)

| assume prop (=)

| [from fact™] (have | show) prop proof
prop = [name:] "formula”

fact = name|...

133

@ Isar by example

134

Example: Cantor's theorem

lemma — surj(f :: 'a = 'a set)
proof default proof: assume surj, show False
assume a: surj f
fromahave b: V A. 3 a. A=fa
by(simp add: surj_def)
from b have ¢: 3 a. {z. 2 ¢ fz} = fa
by blast
from ¢ show Fulse
by blast
ged

135

Isar_Demo.thy

Cantor and abbreviations

136

this
then
thus
hence

Abbreviations

the previous proposition proved or assumed
from this

then show

then have

137

using and with

(have|show) prop using facts

from facts (have|show) prop

with facts

from facts this

138

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse
proof — mno automatic proof step
have 3 a. {z. 2 ¢ fz} = f a using s
by(auto simp: surj def)
thus Fulse by blast
ged
Proves surj f = Fulse
but surj f becomes local fact s in proof.

139

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

140

Structured lemma statements

fixesz::mandy::7m ...
assumes a: Pand b: () ...
shows R

¢ fixes and assumes sections optional
¢ shows optional if no fixes and assumes

141

© Proof patterns

142

show R
proof cases
assume P

show R (proof)
next
assume — P

show R (proof)
ged

Case distinction

have P Vv @ (proof)
then show R
proof

assume P

show R (proof)
next
assume ()

show R (proof)
ged

143

Contradiction

show - P show P

proof proof (rule ccontr)
assume P assume —F
show False (proof) show Fulse (proof)

ged ged

144

show P «+— ()
proof
assume P

show) (proof)
next

assume ()

show P (proof)
ged

145

Y and d introduction

show V z. P(z)
proof
fix £ local fixed variable
show P(z) (proof)
ged

show Jz. P(x)
proof

show P(witness) (proof)
ged

146

- elimination: obtain

have Jz. P(x)
then obtain = where p: P(z) by blast

z fixed local variable

Works for one or more

147

obtain example

lemma — surj(f :: 'a = 'a set)

proof
assume surj f
hence Ja. {z. z ¢ fz} = faby(auto simp: surj_def)
then obtain o where {z. © ¢ fz} = fa by blast
hence ¢ ¢ fa<+— a € fa by blast
thus Fualse by blast

ged

148

Set equality and subset

show A = B
proof

show A C B (proof)
next

show B C A (proof)
ged

show A C B
proof

fix z

assume r € A

show z € B (proof)
ged

149

Isar Demo.thy

Exercise

150

© Proof patterns
Chains of (In)Equations

151

Chains of equations
Textbook proof
ty = o (justification)
=13 (justification)

=t, (justification)

In Isabelle:
have t, = t, (proof)
also have ... = t3 (proof)
also have ... = t, (proof)

finally show t;, = ¢, .

" is literally three dots

152

Chains of equations and inequations

Instead of = you may also use < and <.

Example
have t, < t, (proof)
also have ... = t3 (proof)

also have ... < t, (proof)
finally show #; < t, .

153

How to interpret “...

have t; < t, (proof)
also have ... = #3 (proof)

Here “..." is internally replaced by

In general, if this is the formula p t; t, where p is some
constant, then “..."” stands for f».

154

Isar_Demo.thy

Example & Exercise

155

@ Streamlining Proofs

156

@ Streamlining Proofs
Pattern Matching and Quotations

157

Example: pattern matching

show formula, <— formula, (is 7L <— ?R)
proof
assume 7L

show 7R (proof)
next
assume 7R

show 7L (proof)
ged

158

thesis

show formula (is “thesis)
proof -

show “thesis (proof)
ged

Every show implicitly defines ?thesis

159

Introducing local abbreviations in proofs:

let Y41 = "some-big-term"

have "... 7t..."

let

160

Quoting facts by value

By name:
have x0: "z > 0"

from x0 ...

By value:
have "z > 0" ...

from x> 0/ ...
))

\<open> \<close>

161

Isar_Demo.thy

Pattern matching and quotations

162

@ Streamlining Proofs

Top down proof development

163

Example

lemma

dys zs. xs = ys @Q zs A

(length ys = length zs \V length ys = length zs + 1)
proof 777

164

Isar_Demo.thy

Top down proof development

165

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have ... using ...
apply - to make incoming facts
part of proof state
apply auto or whatever
apply ...
At the end:
e done

e Better: convert to structured proof

166

@ Streamlining Proofs

Local lemmas

167

Local lemmas

have B if name: A, ... A, forz; ... z,
(proof)
proves [Ay; ... ; A,] = B

where all z; have been replaced by ?z;.

168

Proof state and Isar text

In general: proof method

Applies method and generates subgoal(s):
ANry ooz [Ay ... 3 Ap] = B

How to prove each subgoal:

fix z; ... z,
assume 4, ... A,
show B

Separated by next

169

@ Proof by Cases and Induction

170

Isar Induction_Demo.thy

Proof by cases

171

Datatype case analysis
datatype t = C; 7 |

proof (cases "term")
case (C} x ...)
next
ged
where case (C;x ... x;) =
fix r; ... =
assume (C;: term = (%xl a:k)/

label formula
172

Isar Induction_Demo.thy

Structural induction for nat

173

Structural induction for nat

show P(n)
proof (induction n)
case (

let ?case = P(0)

show “case
next
case (Suc n)

fix n assume Suc: P(n)
let Zcase = P(Suc n)

show “case
ged

174

Structural induction with =

show A(n) = P(n)
proof (induction n)

case 0 = assume 0: A(0)
: let ?case = P(0)
show ?case
next
case (Suc n) = fixn
assume Suc: A(n) = P(n)

A(Suc n)

: let ?case = P(Suc n)
show “case
ged

175

Named assumptions

In a proof of
Aq . A, B

by structural induction:

In the context of
case (

we have
C.IH the induction hypotheses
C.prems the premises A;
¢ C.IH + C.prems

176

A remark on style

e case (Suc n) ... show ?case
is easy to write and maintain

e fix n assume formula ... show formuld
is easier to read:

® all information is shown locally
® no contextual references (e.g. ?case)

177

Isar_Induction_Demo.thy

Computation induction

178

Computation induction

If function fis defined by fun with n equations:
proof(induction s t ... rule: f.induct)

Generates cases named 7 = 1... n:

case (i zy ...)

Isabelle /jEdit generates Isar template for you!

179

Computation induction
Naming

71is a name, but not 7./H

Needs double quotes: "i.IH"
Indexing: (1) and "i.IH"(1)

If defining equations for f overlap:

~> |sabelle instantiates overlapping equations
~» case names of the form ";_j"

180

	Introduction
	Programming and Proving
	Type and function definitions
	Induction Heuristics

	Case Study: Binary Search Trees
	Logic and Proof Beyond Equality
	Single Step Proofs

	Isar: A Language for Structured Proofs
	Streamlining Proofs
	Proof by Cases and Induction

