
Technical University of Munich WS 2019/20
Chair for Logic and Verification 18.10.2019

Prof. Tobias Nipkow, Ph.D. Deadline: 29.10.2019, 00:00
J. Rädle, L. Stevens, K. Kappelmann

Functional Programming and Verification
Sheet 1

IMPORTANT: You may only attend the tutorial with a running version of GHC as specified
on the course website http://www21.in.tum.de/teaching/fpv/WS1920/ghc.html.

Tutorial Exercises

Exercise T1.1 Hello Haskell

1. Define a function

threeAscending :: Integer -> Integer -> Integer -> Bool

that returns True if and only if the sequence of parameters is strictly monotonically in-
creasing.

2. Define a function

fourEqual :: Integer -> Integer -> Integer -> Integer -> Bool

that returns True if and only if all parameters are equal.

3. Evaluate the following expressions by hand, line by line:

threeAscending (2+3) 5 (11 `div` 2)

fourEqual (2+3) 5 (11 `div` 2) (21 `mod` 11)

Exercise T1.2 For Recursion See Recursion

1. Define a recursive function fac :: Integer -> Integer such that fac n = n!.

2. Define a function sumEleven :: Integer -> Integer such that sumEleven n =
∑n+10

i=n i.

Hint: use an auxiliary function.

Exercise T1.3 Maximum Fun

1. Define a recursive function

argMax :: (Integer -> Integer) -> Integer -> Integer

such that argMax g n maximises g in the domain {0, . . . , n}.
2. Let g be the following function

g :: Integer -> Integer

g n = if n < 10 then n*n else n.

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
https://www21.in.tum.de/~kappelmk/
https://fpv.in.tum.de
http://www21.in.tum.de/teaching/fpv/WS1920/ghc.html


Examine g to determine when argMax g n 6= n. Use your observations to write a func-
tion argMaxG :: Integer -> Integer that does not use g and satisfies the property
argMax g n = argMaxG n. Write a QuickCheck test to check the equivalence.

Homework

Important: You have to submit your homework on https://vmnipkow3.in.tum.de/web/.
Your homework will automatically be tested and graded. You can submit as many times
as you want. Your last submission will constitute your final grade. Read the FAQ at
http://www21.in.tum.de/teaching/fpv/WS1920/faq-tests.html.

In this homework, we shall meet some of the best mathematicians in history. You need to
collect 4 out of 7 points (P) to pass this sheet and become part of the mathematical society.

Exercise H1.1 Cantor’s Creativity [1: 1P, 2: 1P, 3+4: 1P]

Georg Cantor

As a matter of course, Haskell knows about pairs; however, we sadly haven’t
learnt about them in class so far. But fear not! As shown by the great
Georg Cantor, we can just encode pairs in a clever way. We do not directly
follow the great Cantor’s approach though but define a different encoding
function proposed by the MC Sr. The following functions only need to
work for natural numbers N = {0, 1, 2, . . . }.

1. Define the encoding function

myPair :: Integer -> Integer -> Integer

such that
myPair x y = 2x(2y + 1).

2. Define the inverse function

myFst :: Integer -> Integer

such that
myFst (myPair x y) = x.

Hint: Divide by 2 until the number is not divisible by 2 anymore.

3. Define the inverse function

mySnd :: Integer -> Integer

such that
mySnd (myPair x y) = y.

2

https://vmnipkow3.in.tum.de/web/
http://www21.in.tum.de/teaching/fpv/WS1920/faq-tests.html
https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Pairing_function


Carl Friedrich Gauss

The only existing
portrait/caricature
of Adrien-Marie
Legendre

Leonhard Euler

4. Write a QuickCheck test with parameters x, y ∈ N that checks whether
myFst and mySnd are indeed inverse functions, that is they satisfy the
equations stated above.

Hint: You can restrict your test’s domain by using the “==>” oper-
ator, e.g. x >= 0 ==> x^3 >= 0.

Exercise H1.2 Legendre the Legend [1: 1P, 2: 1P, 3: 1P, 4+5: 1P]

1. Define a function

equivMod :: Integer -> Integer -> Integer -> Bool

such that equivMod n a b returns True if and only if a ≡ b (mod n); that is, a is equi-
valent to b modulo n. You can assume that n ∈ N+ := {1, 2, 3, . . . }

2. (Competition) Given n ∈ N+ and q ∈ Z, we say that q is a quadratic residue modulo n if
there exists x ∈ Z such that x2 ≡ q (mod n). Quadratic residues were first systematically
treated by Carl Friedrich Gauss. Define a function

quadRes :: Integer -> Integer -> Bool

such that quadRes n a returns True if and only if a is a quadratic residue modulo n.

Hint: Since (n + m)2 mod n = n2 + 2nm + m2 mod n = m2 mod n, one only needs to
search for candidates in {0, . . . , n− 1}.
This exercise was posed by the Master of Competition Junior (MC Jr.). It will be marked
as part of your homework but also counts towards the competition.1 The solution with
the smallest number of tokens wins the competition. Tokens include identifiers, operators,
brackets, numbers, etc.2 The length of an identifier is irrelevant. You can download the
official token counter from the lecture website.3

1http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html
2http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html#token
3http://www21.in.tum.de/teaching/fpv/WS1920/Tokenize.hs

3

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Leonhard_Euler
http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html
http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html#token
http://www21.in.tum.de/teaching/fpv/WS1920/Tokenize.hs


You are allowed to use anything from the libraries specified on the website4 as well as
self-written auxiliary functions. The complete solution (including self-written functions
like equivMod but excluding functions from external libraries) must be submitted inside
the comments {-WETT-} and {-TTEW-}, for example

{-WETT -}

quadRes :: Integer -> Integer -> Bool

quadRes n a = ...

{-TTEW -}

The Master of Competition Sr. (MC Sr.) needed 21 tokens for his solution. Show him
what you got!

Important: If you submit a competition exercise, you agree that we are allowed
to publish your name as part of the competition on our website. If you just want
to submit a competition exercise as part of your homework without taking part in
the competition, you can just remove the {-WETT-} . . . {-TTEW-} comments of your
submission.

3. Next, we implement the Legendre symbol
(
a
n

)
as introduced by the French mathematician

Adrien-Marie Legendre. Define a function

legendre :: Integer -> Integer -> Integer

such that

legendre n a =


1, if a is a quadratic residue modulo n and a 6≡ 0 (mod n)

−1, if a is a not a quadratic residue modulo n

0, if a ≡ 0 (mod n)

.

4. Define a function prime :: Integer -> Bool such that, for all n ∈ N+, prime n returns
True if and only if n is prime. You do not have to be clever and can just implement a
naive algorithm. But of course, you are allowed to be clever to impress your tutor.

5. Given an odd prime p and a ∈ Z, Euler’s criterion states that

legendre p a ≡ a
p−1
2 (mod p).

Write a QuickCheck test with parameters p, a that checks whether your implementation
of legendre indeed satisfies the criterion.

Now I feel as if I should succeed in doing something in mathematics, although I
cannot see why it is so very important.

— Helen Keller

4http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html#libraries

4

http://www21.in.tum.de/teaching/fpv/WS1920/wettbewerb.html#libraries

