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Tutorial Exercises

Exercise T2.1 Axiom of Comprehension

Using list comprehension, implement the following functions:

1. Write a function allSums :: [Integer] -> [Integer] -> [Integer] such that, for
every x, y in xs, ys, allSums xs ys contains x+ y.

2. Write a function evens :: [Integer] -> [Integer] that removes all odd numbers of a
list.

3. Write a function nLists :: [Integer] -> [[Integer]] such that nLists xs returns a
list containing every list [1, . . . , x] for x in xs.

4. Using only one list comprehension, write a function

allEvenSumLists :: [Integer] -> [Integer] -> [[ Integer ]]

such that allEvenSumLists xs ys computes nLists (evens (allSums xs ys)). Write
a QuickCheck test that verifies this property.

Exercise T2.2 Cantor’s Paradise

The great Georg Cantor did not only teach us about encodings of pairs, but also created the
realm of set theory. In this exercise (and its marvellous follow-up homework), we shall praise
this idea by encoding basic set-theoretic notions using our beloved Haskell lists.

For the following exercises, you can use the function elem :: Integer -> [Integer] -> Bool

that returns whether an element is contained in a list.

1. We say that a list l :: Integer is a set if and only if l contains no duplicates. Define
a function toSet :: [Integer] -> [Integer] such that toSet l removes all duplicates
of l.

2. Define a function isSet :: [Integer] -> Bool such that isSet l holds if and only if l
is a set. Check that isSet (toSet s) holds using QuickCheck.

3. Define a function union :: [Integer] -> [Integer] -> [Integer] such that union s t

returns the union s ∪ t. Write some QuickCheck tests to verify your implementation:

a) Check that union s t indeed returns a set.

b) Mathematically, we have a ∈ S ∪ T if and only if a ∈ S or a ∈ T . Check that your
implementation satisfies this property.
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4. Define a function intersection :: [Integer] -> [Integer] -> [Integer] such that
intersection s t returns the intersection s ∩ t. Again, write some QuickCheck tests to
verify your implementation.

5. Define a function diff :: [Integer] -> [Integer] -> [Integer] such that diff s t

returns the difference s \ t.
Note: Use quickCheckWith (stdArgs { maxSize=4, maxDiscardRatio=40 }) to check your
properties. This will cause QuichCheck to only generate small parameters (up to size 4) and
give up if the number of discarded tests exceeds 40. You can use verboseCheckWith instead of
quickCheckWith to see all generated parameters.

Exercise T2.3 Fract
ions

We can represent a fraction a
b as a tuple (a,b). Two fractions should be equal whenever they

represent the same value, e.g. (1,2) and (3,6) represent the same value.

1. Write a function

eqFrac :: (Integer , Integer) -> (Integer , Integer) -> Bool

that decides wheter two fractions are equal.

2. Write some QuickCheck tests that verify interesting properties of eqFrac, e.g. reflexitivity,
symmetry, the cancellation law m/n = (m · k)/(n · k), etc.

Exercise T2.4 Potentially Dangerous2
22
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The function

pow2 :: Integer -> Integer

pow2 0 = 1

pow2 n | n > 0 = 2 * pow2 (n - 1)

implements n 7→ 2n für n ≥ 0. For a given n, the computation takes n steps. For example:

2100 = 2 · 299 = 2 · 2 · 298 = 2 · 2 · 2 · 297 = · · · =
100 times︷ ︸︸ ︷

2 · 2 · . . . · 2 · 1

Create a more efficient version that takes at most d2 log2 ne steps. The identities 22n = (2n)2

and 22n+1 = 2 · 22n might be useful. For example:

2100 = (250)2 = ((225)2)2 = ((2 · 224)2)2 = ((2 · (212)2)2)2 = ((2 · ((26)2)2)2)2

= ((2 · (((23)2)2)2)2)2 = ((2 · (((2 · 22)2)2)2)2)2
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Homework

You need to collect 4 out of 6 points (P) to pass this sheet. Blocks marked with Trivia contain
information that is not needed to solve the exercises but almost surely is appealing to the
interested reader.

Hint: Some functions from the List library may be useful for these exercises. In particular,
consider null, length, minimum, and maximum.

Exercise H2.1 Let’s Play a Game [1+2: 1P, 3: 1P]

You are the Master of Competition for an exciting game of Guess the Average. In this game,
each competitor guesses a natural number between 0 and 100 that they think will be closest to
the average guess.

You receive the guesses in the form of an association list of type [(String,Int)]. Each entry
in the list is a pair of the competitor’s name and their guess. We use Int instead of Integer so
that you can use functions from the List library, some of which return Int for historical reasons.

Your task is to determine the winner(s) of the game.

1. Begin by writing a function

removeInvalidGuesses :: [(String ,Int)] -> [(String ,Int)]

that removes any invalid guesses, i.e. guesses which do not lie between 0 and 100 or were
submitted without a name.

2. Write a function

average :: [(String ,Int)] -> Int

that computes the average guess. If there are no guesses, simply return 0. (We use integer
division here, since we have not introduced floating point numbers yet)

3. Write a function

winners :: [(String ,Int)] -> [String]

that computes the competitors whose guesses are closest to the average guess. Be sure to
first restrict the input to valid guesses.

Exercise H2.2 (Competition) Bernoulli numbers [1P]

Jacob Bernoulli

This week’s competition exercise revolves around one of the MC’s favourite
sequence of numbers: the Bernoulli numbers Bn. The following table lists
the first nine of them:

n 0 1 2 3 4 5 6 7 8 9 10 . . .

Bn 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 . . .
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Trivia

These numbers appear in many places in mathematics for no apparent
reason: For instance, Faulhaber’s formula states that the sum of the p-th
powers of the first n integers is a polynomial in n, namely

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(−1)j
(
p+ 1

j

)
Bjn

p+1−j .

You probably know the case p = 1, which is Gauß’s sum formula
∑n

k=1 k = 1
2n(n+ 1).

They also make an appearance in the famous Riemann ζ function, which has deep connec-
tions to the multiplicative structures of the integers and the distribution of prime numbers:
At negative integers, it takes the value

ζ(−n) = −Bn+1

n+ 1
.

Your task is to implement the function

bernoulli :: Integer -> Rational

that, given a non-negative integer n, returns Bn. Note that since Bernoulli numbers are rational
numbers, we use Haskell’s Rational type.

The most basic way to compute Bernoulli numbers is by using the following recurrence:

B0 = 1 Bn =
n−1∑
k=0

(
n

k

)
Bk

k − n− 1
for n > 0

For the competition, the MC will again rank the solutions by their number of tokens (and
possibly other criteria like performance or beauty to break any ties). For reference, the MC Sr’s
shortest solution following the above approach has 42 tokens (not counting the type signature).
However, the above recurrence is just a suggestion – there are many other ways to compute
Bernoulli numbers and some of them might lead to a shorter solution. Rumour has it that there
is a solution with only 26 tokens. Can you beat that?

Hints:

• The function sum :: [Rational] -> Rational from the library computes the sum of a
list of values, e. g. sum [1,2,3] = 6.

• For integers m and n, you can write the fraction m
n as m % n in Haskell. This is also the

format in which fractions will be printed.

• The function fromIntegral from the library converts an Int or Integer into a Rational,
e. g. fromIntegral 3 == 3 % 1.
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• To compute the binomial coefficient
(
m
k

)
, you may use the choose function from the

template, e. g. (49 `choose` 6) == 13983816. However, note that if you use it and want
to take part in the competition, you have to put it within the {-WETT-} tags!

• It’s okay if your implementation is fairly slow for inputs above 10 or 15. However, it has
to pass the tests on the server.

• But: No cheating! Your implementation has to work (theoretically) for all inputs, no
matter how big, even if it practically takes forever. If you use a look-up table for all inputs
≤ 100, hoping that inputs bigger than 100 will not get tested, the MC will find out and
award you 0 points.

• Also: Do not plagiarise. The MC encourages you to find inspiration on the internet and
textbooks, but do not copy-paste somebody else’s code. You must write the code yourself.

• If you’re not sure if what you are doing is allowed, you can ask the MC via eberlm@in.tum.de.

Important: If you submit a competition exercise, you agree that we are allowed to publish
your name as part of the competition on our website. If you just want to submit a competi-
tion exercise as part of your homework without taking part in the competition, you can just
remove the {-WETT-} . . . {-TTEW-} comments of your submission.

Exercise H2.3 I G∅t the P∅wer [1: 1P, 2+3: 1P, 4+5: 1P]

Since we all very much do love set theory (and we want to get to know more mathematicians), we
will now implement even more set-theoretic functions while also climbing the level of abstraction,
that is we will build sets of sets (of sets. . . ). For this, we provide you with two generalised helper
functions from the tutorial

toSet :: Eq a => [a] -> [a]

union :: Eq a => [a] -> [a] -> [a]

that create a set and unify two sets, respectively, even if the set itself contains other sets. Do not
worry about the “Eq a =>” annotation; this feature will be explained in an upcoming lecture.1

For example, we have

toSet [[2] ,[1] ,[2]] = [[2] ,[1]]

union [[2] ,[1]] [[]] = [[2] ,[1] ,[]]

union [[[1 ,2]]] [[[2]]] = [[[1 ,2]] ,[[2]]]

As a restriction, we cannot, however, unifiy sets that have different levels of nested sets; for
example, an invokation of union [[2]] [1] will fail.

1. Define functions

power :: [Integer] -> [[ Integer ]]

subsetEq :: [Integer] -> [Integer] -> Bool

1“Eq a” basically restricts the function to types that work with equality.
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Helen Keller (ad-
dendum to sheet
1)

Emanuel Sperner Richard Dedekind André Weil

such that

a) power s returns the power set 2s of s, e.g. power [1,2] = [[],[1],[2],[1,2]],
and

b) subsetEq s t holds if and only if s ⊆ t.
2. Given two sets s, t we say that s, t are comparable if s ⊆ t or t ⊆ s. If s, t are not

comparable, we say that s, t are incomparable.

Define a function

comparable :: [Integer] -> [Integer] -> Bool

such that comparable s t holds if and only if s, t are comparable. For example, in our
encoding, the sets [1],[1,2] as well as [],[1] are comparable whereas [1,2],[1,3] are
incomparable.

3. Given a set of sets A, we say that A is an antichain if and only if s, t are incomparable for
any distinct s, t ∈ A. Define a function

isAntichain :: [[ Integer ]] -> Bool

such that isAntichain a holds if and only if a is an antichain. For example, in our
encoding, the sets

[] [[]] [[1],[2]] [[1],[2,3],[2,4,5]]

are antichains whereas

[[],[1]] [[1],[1,2]] [[1],[2,3],[1,4,5]]

are not antichains.

4. Define a function

antichains :: Integer -> [[[ Integer ]]]
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such that antichains n returns a list of all antichains of the powerset 2{1,...,n}.2 For
example,

antichains 1 = [[], [[]], [[1]]]

antichains 2 = [[], [[]], [[1]], [[2]], [[1], [2]], [[1,2]]]

It is okay if your implementation is fairly slow for inputs above 3 – cf. note at the end of
the sheet.

Hint: use the force power.

5. Define a function

maxAntichainSize :: [[[ Integer ]]] -> Int

such that maxAntichainSize s returns the size of the largest antichain in s. The function
also needs to work for inputs that contain elements that are not antichains. If there are
no antichains, simply return 0. Use the list function length to compute the size of a set.

Sperner’s theorem now tells us the size of the maximum antichain of the set 2{1,...,n}, namely
maxAntichainSize (antichains n) =

(
n
bn/2c

)
for any n ∈ N+. Write a QuickCheck test

prop_spernersTheorem :: Integer -> Property

that verifies this claim.

Trivia

You might now also wonder what the size of antichains n is; in other words: what is
the number of antichains of the powerset 2{1,...,n}? The MC Jr. challenges you to find
an efficient method to compute these numbers – famuously known as Dedekind numbers
(sequence A000372 in the OEIS) – for arbitrary n. But beware: no closed formula and no
value for n > 8 are known to this day.

There is also an interesting connection between antichains and chain decompositions: Given
a set of sets C, we say that C is a chain if and only if s, t are comparable for any distinct
s, t ∈ C. A chain decomposition D of some powerset 2S is a set of disjoint chains of
2S such that

⋃
C∈D C = 2S . Dilworth’s theorem now states that the size of the smallest

chain decomposition of 2{1,...,n} equals the size of the maximum antichain over 2{1,...,n}. For
example, for n = 2, we have a smallest chain decomposition D =

{
{∅, {1}, {1, 2}}, {2}

}
and

a maximum antichain A = {{1}, {2}}.

God exists since mathematics is consistent, and the Devil exists since we cannot
prove it.

— André Weil

You might want to check out Gödel’s Incompleteness Theorems.

2Note: for n < 1, we have {1, . . . , n} = ∅.
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