Technical University of Munich WS 2019/20
Chair for Logic and Verification 01.11.2019
Prof. Tobias Nipkow, Ph.D. Deadline: 11.11.2019, 23:59
J. Radle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification

Sheet 3
Tutorial Exercises
Exercise T3.1 Matrices
1. Write a function dimensions :: [[al]l -> (Int,Int) that determines the dimensions of

its input matrix encoded as a list. For example, the matrix
1 2 3 4
5 6 7 8
9 10 11

[
—_
—_

2

will be encoded as [[1,2,3,41[5,6,7,8]1[9,10,11,12]]. Calling dimensions on this
matrix should return (3,4). If the input is not a valid matrix, e.g. if one row contains
fewer elements than the other rows, the function should return (-1,-1).

2. Define a predicate isSquare :: [[al]l -> Bool that returns true iff its input is a square
matrix. Also define predicates

canAdd :: [[al]l -> [[al]l] -> Bool
canMult :: [[al]l -> [[al]] -> Bool

that determine whether their input matrices have the right dimensions to be added or
multiplied together.

3. Write a function diagonal :: [[a]] -> [a] that returns the diagonal of a square matrix
encoded as a list. For example, the diagonal line of the matrix

~ =~ =

2 3
5 6
8 9

above matrix is [1,5,9].
Can you extend this to a function that takes the diagonal line of a cube?

4. Define functions

matrixAdd :: [[Integer]] -> [[Integer]] -> [[Integer]]
matrixMult :: [[Integer]] -> [[Integer]] -> [[Integer]]

which add/multiply two matrices.

Hint: for multiplication, you may want to use the transpose function from the List
library.

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

Exercise T3.2 Merge Sort
In the lecture you have seen a Haskell implementation of Quicksort. In this assignment you will
have to implement Merge Sort in Haskell.

Recall: Merge Sort is based on the divide-and-conquer principle. First, it splits a list in two
halves and sorts these lists separately. In the conquer step, it merges the two sorted lists. Note
that this can be done recursively by comparing the two heads of the lists.

e Implement a Haskell function mergeSort :: [Integer] -> [Integer] that sorts an in-
teger list in ascending order by using Merge Sort. To split the list, you can use the functions
take and drop.

e Implement a function adjacentPairs :: [a] -> [(a,a)] that generates all adjacent
pairs of elements from a given list.

e Test your sorting function by checking whether all adjacent pairs of its result are indeed
in the correct order.

Exercise T3.3 Collatz Conjecture

We define the following function f: N — N

1, ifn=1
f(n)=147%, if n is even

3n+ 1, otherwise
and, for every n € Ny, the sequence

Co="mn, C41= f(Cz')-

The longstanding Collatz conjecture states that for every n € N, the
sequence (¢;)ien stabilises to 1. Lothar Collatz

1. Write a function collatz :: Integer -> [Integer] such that
collatz n computes the sequence (¢;);en until it stabilises at 1. For
example,

collatz 12 = [12,6,3,10,5,16,8,4,2,1].

2. Write a quickCheck test that checks whether the collatz conjecture
holds for 1 < n < 100.

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Lothar_Collatz

Homework

You need to collect 5 out of 6 points (P) to pass this sheet.

Exercise H3.1 Decomposition [1+2: 1P, 3+4: 1P|

1. Write a function decomposition :: Int -> [Int] such that decomposition n returns
the list of all prime divisors of n € Ny in ascending order. For example,

decomposition 180 = [2,2,3,3,5].

Use this to write a function

decomposition2 :: Int -> [(Int, Int)]
such that decomposition2 n returns the list of all prime divisors of n including their
multiplicity. For example,

decomposition2 180 = [(2,2),(3,2),(5,1)].

2. Write two functions
isPrime :: Int -> Bool
primes :: Int -> [Int]
such that isPrime n returns true if and only if n is prime and primes n returns the list
of all prime numbers up to n. Use the functions defined in task 1.
3. Implement a function
takes :: [Int] -> [al -> [[all
such that for every list of positive natural numbers ns and list xs, the function creates a
list of sublists of xs whose lengths are specified by ns. For example,

takes [1..3] [0..5] ([o],[1,2],[3,4,5]]
takes [1..5] [0..11] (rol,r1,21,03,4,51,[6,7,8,9]1,[10]1,[11]11]
takes [1..3] [0..11] (fol,[1,21,[3,4,5]]

As you can see in the second example, if the next length specified by ns is greater than the
remaining size of xs, the function inserts the remaining elements as singletons. Moreover,
if the sum of ns is smaller than the length of xs, the process just stops earlier as you can
see in the third example.

4. Write a function
takePrimes :: [a]l -> [[all
that creates a list of sublists of a given list whose lengths are consecutive prime numbers
(starting from 2). For example,

takePrimes [1..7] = [[1,2],[3,4,5]1,[6],[7]1]
takePrimes [1..12] = [[1,2],[3,4,5],[6,7,8,9,10],[11]1,[12]]

Exercise H3.2 Laurent Polynomials [1: 1P, 2+3: 1P|

In this exercise, we create yet another mathematical library. This time: Laurent polynomials.
Laurent polynomials, named after Pierre Alphonse Laurent, are just like regular polynomials
except that they may also contain negative exponents. We consider Laurent polynomials with
coefficients in Z, that is expressions of the form) " c;xt with ¢;,m,n € Z. For example,
272 -2 4+ 5+ 22 and —z~ ! 4+ 9 are Laurent polynomials.

We encode Laurent polynomials as a list of coefficients and exponents of type [(Integer, Integer)].

We always keep our polynomials sorted in ascending order by their exponents. Moreover, as

we want to save precious bytes on our computer, we only store entries whose coefficients are non-

zero. For example, the polynomial x72—2x 145422 will be encoded as [(1,-2), (-2,-1),(5,0), (1,2)].

1. Write a function
add :: [(Integer,Integer)] -> [(Integer,Integer)] ->
[(Integer,Integer)]
that adds together two Laurent polynomials.

2. Write a function

derivative :: [(Integer,Integer)] -> [(Integer,Integer)]

that takes the formal derivative of a Laurent polynomial:

n n
derivative E gzt | = g izt
i=m

=m

3. Write a function

flipNegExp :: [(Integer,Integer)] -> [(Integer,Integer)]

that transforms a Laurent polynomial to a regular polynomial by flipping the sign of its
negative exponents. For example,

flipNegExp [(1,-2),(-2,-1),(5,0),(1,2)] = [(5,0),(-2,1),(2,2)]

Exercise H3.3 Penguin Tribalism [142: 1P, 34+4: 1P]

Penguins, as we all know, are pack animals, that is they like to pack things into binary format.
To prevent overpopulation, the well-known species of J.K. penguins invented complex rules
written down in binary in the their book of life that governs their society. They decide based on
their local neighbours whether they want to reproduce or fight to death as written in the holy
book. Sadly, just recently on Halloween, they got “verHEXt” by a evil witch that transformed
all their binary rules into hexadecimal.

1. Help the J.K. penguins to break the witch’s spell and retranslate the hexcodes back to
binary. More precisely, write a counterspell

https://en.wikipedia.org/wiki/Pierre_Alphonse_Laurent

unspell :: String -> [Int]

such that unspell s converts s to its binary representation. Moreover, the output list’s
length must be a multiple of four. For example,

unspell "7" = [0,1,1,1]
unspell "b" = [1,0,1,1]
unspell "f3" = [1,1,1,1,0,0,1,1]

. Thanks to you, the penguins have access to their much needed rules again. Each rule
consists of a triple (I,m,r) and an outcome o with I,m,r,0 € {0,1}. A triple (I, m,r)
represents three neighbouring positions (left,middle,right) that are either occupied by a
penguin (1) or not (0). The outcome o of the rule indicates whether a penguin will be
born (1) or have to say goodbye (0).

There exists exactly one rule for each configuration of [, m,r. The binary loving penguins
hence sophisticatedly packed the rules into a list of length 8 in the following way: the
outcome of rule (I, m,r) will be saved at position (Imr)s in the list, where (Imr)s is the
decimal number obtained by interpreting Imr as a binary number. For example, the
outcome of rule (1, 1,0) will be saved at index 6.

Write a function index :: Int -> Int -> Int -> Intsuchthat index 1 m r computes
the index of rule (I, m,r) as described.

. Every full moon, the penguins can now again conduct their anti-overpopulation ritual. For
this, they all form a line with possible gaps and apply the rules as written down in their
book — and decoded by you — to their society.

For each position p of the line, the penguins apply the rule encoded by p and its two
neighbours to p. For example, if there is a penguin at position p accompanied by a left
penguin neighbour but an empty space to its right, the rule (1,1, 0) applies to p. Position
p will consequently be replaced by outcome o of rule (1, 1,0) as saved at index 6 in the list
of rules. Just last full moon, for example, the J.K. penguins formed a line [0,1,0,1] and
used the rules [0,1,0,1,0,1,0,0] resulting in a new penguin colony [1,0,1,0].

Write a function ritual :: [Int] -> [Int] -> [Int] that takes the list of rules and
line of penguins and returns the outcome of the ritual.

. The famous penguin and Linux mascot Tux decided that he wants to simulate the destiny
of his penguin fellows and obtain, when printed to his favourite GNU terminal, a visually
appealing sequence of the penguin population.

Write a function simulate :: [Int] -> [Int] -> Int -> [[Int]] suchthat simulate

returns the list of penguin populations obtained by running the ritual following the rules
r starting with population p for n times. For example,

simulate [0,1,0,1,0,1,0,0] [0,1,0,1] 2
= [[0319031])[1909190],[0111010]]

rpn

https://en.wikipedia.org/wiki/Tux_(mascot)

. LY. VA T W Y VR TR TR T |
LY T T Y T TR T T |
. . T ALY
b YR TR T T T T |
* & &% % ®x *x *x % “““
LY T I T |
. s . s b T T TR
* * * * * * * * “‘
L}

* * * *
* * * * * * * * ‘
* % % % * * % * % * % * * % * *

Sierpinski triangle Death of the penguins

Some of the MC Jr’s splendid penguin simulations.

Penguin couple

As Tux is a strong adherent of open-source software, he shares his visualisation function showPenguins
with you that takes a list of penguin populations ([[Int]]) and an appealing penguin visual-

isation (Char) and prints the results of the ritual to your terminal.

The MC Jr. created some stunning images of penguin colonies using the following snippets

showPenguins (simulate (unspell "5a")

(take 60 (repeat 0) ++ [1] ++ take 60 (repeat 0)) 31) 'x!

showPenguins (simulate (unspell "16")
(concat $ take 60 (repeat [0,1])) 60) 'x*!'

showPenguins (simulate (unspell "2f")
([1,1] ++ take 30 (repeat 0)) 15) '=!

Be creative and submit your most tasteful colonies on Piazza.

Continue on next page!

It’s turtles penguins all the way down.

— original author unknown

https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
https://piazza.com/tum.de/fall2019/in0003
https://en.wikipedia.org/wiki/Turtles_all_the_way_down

‘ A replica of the Zuse Z3 in the
Ada Lovelace Charles Babbage Part of the Analytical Engine Deytsches Museum.

Exercise H3.4 (Competition only) Bernoulli returns [OP]

Attention! This exercise does not give you any homework points. It is only intended for those
who want to compete in the competition.

The MC Sr and his minions could not be bothered to come up with a new competition problem,
so they decided to simply pose the same problem as last week again: Implement a function

bernoulli :: Integer -> Rational

that, given a non-negative integer n, computes the n-th Bernoulli number B,,.

However, to mix things up a little bit, this week the MC wants you to optimise your solutions
for performance, not for tokens. Since the simple approach suggested on the last exercise sheet
becomes very slow very quickly, you will probably have to find another method. The MC’s
implementation can compute Bgopp (whose numerator has over 15000 digits) in under 10 seconds.
Can you beat him?

Note: Again, no cheating! The MC Sr will not look kindly upon attempts to use look-up tables
for the first 10000 values or to query WolframAlpha via HT'TP or anything like that.

Trivia
Did you know? In 1843, Augusta Ada King, Countess of Lovelace, wrote what is widely

considered to be the first computer program ever — and its purpose was to compute Bernoulli
numbers!

It was designed to run on Charles Babbage’s Analytical Engine, a mechanical general-purpose
computer far ahead of its time. Sadly, it was never actually built (partly because it was
deemed too expensive and its value was not sufficiently recognised).

It then took more than 100 years until the first ‘proper’ general-purpose computer was
realised: Konrad Zuse’s Z3. There is a working replica in the Deutsches Museum here in
Munich. The MC suggests you have a look at it some time!

Important: If you submit a competition exercise, you agree that we are allowed to publish
your name as part of the competition on our website. If you just want to submit a competi-
tion exercise as part of your homework without taking part in the competition, you can just
remove the {-WETT-}...{-TTEW-} comments of your submission.

