
Technical University of Munich WS 2019/20
Chair for Logic and Verification 08.11.2019

Prof. Tobias Nipkow, Ph.D. Deadline: 18.11.2019, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification
Sheet 4

Tutorial Exercises

Exercise T4.1 Oxford Comma

Write a function andList :: [String] -> String that takes a list of words [w1, w2, . . . , wn−1,
wn] and returns the text ,,w1, w2, . . . , wn−1, and wn“ (using a comma in front of the ,,and“1).
There are, however, exceptions for n < 3:

andList [] = ""

andList [" Ayize"] = "Ayize"

andList [" Bhekizizwe", "Gugu"] = "Bhekizizwe and Gugu"

andList ["Jabu", "Lwazi", "Nolwazi "] =

"Jabu , Lwazi , and Nolwazi"

andList [" Phila", "Sihle", "Sizwe", "Zama"] =

"Phila , Sihle , Sizwe , and Zama"

Exercise T4.2 Hello Type Constraints

Without using any list library functions (except the cons operator (:)), implement the following
functions:

1. lSub :: Num a => [a] -> [a] takes a list [x1, . . . , xn] and returns the list [x1−x2, x2−
x3, . . . , xn−1 − xn, xn].

2. noDupSnoc :: Eq a => [a] -> a -> [a] takes a list [x1, . . . , xn] and an element y and
returns the list [x1, . . . , xn, y] if y is not already contained in the list; otherwise, it returns
the input list.

3. addAbsLt :: Num a => Ord a => [a] -> a -> a that takes a list [x1, . . . , xn] and an
element y and returns

∑
i∈{i|xi<y} |xi|.

Hint: use abs from the typeclass Num to compute the absolute value of a number.

Exercise T4.3 Accumulators

Again, without using any list library functions (except the cons operator (:)), implement the
following functions using an accumulator based approach:

1. Rewrite the function addAbsLt from the previous exercise.

2. maxAbs takes a list xs and returns max{|x| | x ∈ xs} if xs is not empty and 0 otherwise.

1 This is known as the ,,Oxford comma“ or ,,serial comma“ and is beloved by the MC Jr.

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

3. countSigns returns the number of negative, zero, and positive elements in a given list.
For example,

countSigns [-1,0,0,-5,2,0] = (2,3,1)

Hint: use signum from the typeclass Num to compute the sign (-1, 0, or 1) of a number.

4. ltAndGt returns True for a given list xs and element y if and only if xs contains both an
element less than and greater than y while iterating the list only once.

5. uniqCount takes a list, collapses all adjacent elements that are equal, and counts the
number of collapsed elements. For example,

uniqCount [] = []

uniqCount [1,2,3] = [(1 ,1) ,(2 ,1) ,(3 ,1)]

uniqCount [1,2,2,1] = [(1 ,1) ,(2 ,2) ,(1 ,1)]

uniqCount [1,1,4,3,3] = [(1 ,2) ,(4 ,1) ,(3 ,2)]

Homework

You need to collect 4 out of 5 points (P) to pass this sheet.

Exercise H4.0

Get yourself a good cup of tea and check out the Data.List library for your favourite list functions,
and the references for Eq, Num, and Ord. You might also want to change your default search
engine to Hoogle – a search engine for Haskell libraries.

Exercise H4.1 Kowalski, Text Analysis! [1–3: 1P, 4+5: 1P, 6–9: 1P, 10: 1P, 11: 1P]

The subsequent vocabulary analysis makes use of multisets, which, in contrast to sets, may
contain the same element multiple times, e.g. the multiset {a, b, a} contains a two times (we
say that the multiplicity of a is two). A multiset of elements of type a is represented as a
list [(a, Int)] of tuples where the second component of each tuple is the multiplicity of the
element. Implement the following multiset operations:

1. isMultiSet :: Eq a => [(a, Int)] -> Bool is a predicate that checks whether its ar-
gument is a proper multiset in the sense that all multiplicities are greater than 0 and that
there are no duplicates.

2. toList :: [(a, Int)] -> [a] converts a multiset into a list that contains n copies of
each element e with multiplicity n.

3. toSet :: Eq a => [(a, Int)] -> [a] is similar to toList but also eliminates duplic-
ates.

4. toMultiSet :: Eq a => [a] -> [(a, Int)] converts a list to a multiset.

2

https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Eq
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Num
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Ord
https://hoogle.haskell.org/

5. multiplicity :: Eq a => a -> [(a, Int)] -> Int determines the multiplicity of an
element in a multiset.

We can consider a multiset as an infinite vector (m1,m2, . . .) by assigning each e :: a a unique
index i and letting mi be the multiplicity of e. A possible measure for the similarity of two
vectors ~a and ~b is the cosine of the angle θ between them, which can be calculated as follows

cos θ =
~a ◦~b
||~a|| · ||~b||

,

where ~a ◦ ~b is the dot product of ~a and ~b and ||~a|| is the euclidean norm of ~a defined as√
a21 + a22 + · · · for ~a = (a1, a2, . . .). Implement the following functions in order to calculate

the similarity of two multisets:

6. dotProduct :: Eq a => [(a, Int)] -> [(a, Int)] -> Int computes the dot product
between the vector representation of two multisets.

7. euclidean :: Eq a => [(a, Int)] -> Float calculates the euclidean norm of the vec-
tor representation of a multiset.

8. cosine :: Eq a => [(a, Int)] -> [(a, Int)] -> Float returns the cosine of the angle
between two multisets. Hint: you can convert from Int to Float with the function
fromIntegral.

9. Finally, implement the function vocabSimilarity :: String -> String -> Float that
uses the multisets of the words occuring in two different texts to compare them with
cosine:

vocabSimilarity "i am hungry" "hello hungry this is patrick"

>>> 0.2581989

vocabSimilarity "ask not what your country can do for you"

"ask what you can do for your country"

>>> 0.9428091

vocabSimilarity "lorem ipsum dolor sit amet"

"consectetur adipiscing elit"

>>> 0.0

We now turn our attention from text analysis to word analysis. In particular, we consider the
edit distance between two words v and w which is the minimum number of character removals,
insertions, or substitutions that have to be performed on v such that we arrive at w. In addition
to the above operations, we also allow for the transposition of two adjacent characters, e.g.
changing ”Kowalksi” to ”Kowalski” is one operation. Formally, the edit distance da,b(|a|, |b|)
between two strings a and b, where |a|, |b| is the length of a, b, respectively, is defined recursively

3

as

da,b(i, j) = min

0 if i = j = 0,

da,b(i− 1, j) + 1 if i > 0,

da,b(i, j − 1) + 1 if j > 0,

da,b(i− 1, j − 1) if i, j > 0 and a[i− 1] = b[j − 1]

da,b(i− 1, j − 1) + 1 if i, j > 0 and a[i− 1] 6= b[j − 1]

da,b(i− 2, j − 2) + 1 if i, j > 1 and a[i− 1] = b[j − 2] and a[i− 2] = b[j − 1].

The edit distance is useful for word processing as the permissible operations correspond to typical
errors made by human typists. Your task is to implement a simple spell correction scheme using
the following functions:

10. editDistance :: Eq a => [a] -> [a] -> Int computes the edit distance between two
lists.

11. (Competition) Write a function

spellCorrect :: [String] -> [String] -> [[String]]

such that spellCorrect d xs returns a list of lists of those strings in the dictionary d

whose editDistance is minimal for each x in xs. For example, using the frequentWords

dictionary provided by the template, we have:

spellCorrect frequentWords ["iq", "fpv"]

>>> [["in","is","it","if"],["up","for "]]

For this week’s competition, we are asking you to optimize your spellCorrect function
for performance. As a first step, you might consider implementing editDistance using
dynamic programming in order to avoid recomputing values of da,b.

Important: If you submit a competition exercise, you agree that we are allowed to publish
your name as part of the competition on our website. If you just want to submit a competi-
tion exercise as part of your homework without taking part in the competition, you can just
remove the {-WETT-} . . . {-TTEW-} comments of your submission.

Haskell is concise
Functional well-typed and neat
It is like Haiku

— Haskell’s Haiku webpage

4

https://en.wikipedia.org/wiki/Haiku
https://wiki.haskell.org/Haiku

