Technical University of Munich WS 2019/20
Chair for Logic and Verification 22.11.2019
Prof. Tobias Nipkow, Ph.D. Deadline: 02.12.2019, 23:59
J. Radle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification
Sheet 6

IMPORTANT: We use the cyp (“Check your proof”) format for our proofs. Use the
templates from the submission website to check your proofs by structural induction. The
submission system can check these proofs against the provided templates. Proofs by compu-
tation induction cannot automatically be checked by the system but still have to be written
in the cyp format.

Each proof step must use one of these defining equations, the inductive hypothesis (IH), or
an axiom. You have to state the justification for each step.

Tutorial Exercises

Exercise T6.1 Be More General
We define functions sum :: Num a => [a] -> a and (++) :: [a] -> [a] —-> [a] as follows:

sum Xxs = sum_aux xs O

sum_aux [] acc = acc

sum_aux (x:xs) acc = sum_aux xs (acc+x)
[] ++ ys = ys

(x @ xs) ++ ys = x : (xs ++ ys)

Use structural induction to show that

sum (xs ++ ys) = sum xs + sum ys

Exercise T6.2 Computation Induction

We define the functions sum :: Num a => [a] -> aandsum2 :: Num a => [a] -> [a] -> a:
sum [] = 0

sum (x:xs) = x + sum xs

sum2 [] [] = 0

sum2 [] (y:ys) =y + sum2 ys []
sum2 (x:xs) ys

X + sum2 Xxs ys

Use computation induction to show that sum2 xs ys = sum xs + sum ys.


https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://vmnipkow3.in.tum.de/web/proof
https://vmnipkow3.in.tum.de/web/proof

Note that cyp does not support computation induction. We nevertheless encourage you to
write your proof in a style similar to cyp’s format. In particular, you should always state
what you are proving and any inductive hypotheses. As an example, given the following
definition

myFunc xs [] = xs
myFunc [] (y:ys) = myFunc (y:ys) I[]
myFunc (x:xs) (y:ys) = myFunc (y:xs) ys ++ myFunc xs ys

and a proposition P xs ys, we suggest you to write:

Lemma: P xs ys
Proof by myFunc-induction on xs ys
Case 1
To show: P xs []
Proof
QED
Case 2
To show: P [] (y:ys)
IH: P (y:ys) []
Proof
QED
Case 3
To show: P (x:xs) (y:ys)
IH1: P (y:xs) ys
IH2: P xs ys
Proof
QED
QED

Exercise T6.3 Iteration

1. Write a function iter :: Int -> (a -> a) -> a -> a that takes a number n, a function
f, and a value x and applies f n-times with initial value x, that is iter n f x computes
f™(x). A negative input for n should have the same effect as passing n = 0. For example,
iter 3 sq 2 = 256, wheresq x = x * x

2. Use iter to implement the following functions without recursion:
a) Exponentiation: pow :: Int -> Int -> Int such that pown k = n* (for all k > 0).
b) The functiondrop :: Int -> [a] -> [a] from Haskell’s standard library that takes



a number k and a list [z1,...,z,] and returns [zxy1,...,2,]. You can assume that
k<n.

c) The function replicate :: Int -> a -> [a] from Haskell’s standard library that
takes a number n > 0 and a value x and returns the list [z,...,z].
P
n-times



Homework

IMPORTANT: The submission system can process multiple file at once. You have to
upload all files (h61.cprf, h62.cprf, and Exercise_6.hs) at once. Moreover, you have to use
the provided filenames when uploading, that is do not change the filenames of the template
files.

You need to collect 4 out of 5 points (P) to pass this sheet.

The needed background theories/definitions (*.cthy files) for the following exercises can be found
on moodle.

Exercise H6.1 It Is All The Same [2P)]

Remember the function addAbsLt :: Num a => Ord a => [a] -> a -> a from sheet 4 that
takes a list [z1,...,2p] and an element y and returns ;e .. o,y [2i[. We implemented two
versions of it: one that does use an accumulator and one that does not. Since you now possess
the power to prove that they are equivalent, we challenge you to show that indeed

addAbsLt xs y = itAddAbsLt xs y

using structural induction so that you can check your proof by cyp.

Exercise H6.2 Fight Against Inequality [2P]
We define:

length [] = 0
length (x:xs)

I
-

+ length xs

countGt [] ys 0

countGt (x:xs) [] length (x:xs)

countGt (x:xs) (y:ys) = if x > y then 1 + countGt (x:xs) ys
else countGt (y:ys) xs

Show that countGt xs ys <= length xs + length ys using computation induction. Follow
the cyp-like template as described in the tutorials. Partial credits can be rewarded for almost
correct, comprehensible proofs.

Note: Given a rule P x ==> y <= z with name myRule and a proof p of P x, you can use
(by myRule OF p) to apply the inequality between y and z. For example:

axiom leAddMono: y <=
axiom zeroLeOne: 0 <

z ==>x +y <=x + z
1

Lemma: 0 + 0 <= 0 + 1
Proof



0+ 0
(by leAddMono OF zeroLeOne) <= 0 + 1
QED

Exercise H6.3 FRACTRAN (Competition) [1P]

For next year’s FPV lecture, the Ubungsleitung wants to move to a more elegant programming
language than Haskell. After much deliberation, the choice has fallen on FRACTRAN, invented
by John Horton Conway.

A FRACTRAN program is simply a list of positive fractions and a positive integer n. To run the
program, one finds the first fraction f in the list such that nf is an integer and then replaces n
by nf. This process is iterated until no fraction in the list produces an integer when multiplied
by n. The final n is the output of the program.

Puzzlingly, there is an embarrasing dearth of production grade FRACTRAN interpreters. Since
the Ubungsleitung cannot be bothered to write one themselves, we pawn this task off on you.

Write a function traceFractran :: [Rational] -> Integer -> [Integer] such that
traceFractran rs n executes the program given by the list of fractions rs with the starting
value n, returning a list containing the values of n after each iteration. You may assume that
the input is well formed, i.e. that rs contains positive rational numbers and that n is a positive
integer.

An example FRACTRAN program is [3%2], which adds two integers a and b encoded as 2¢3°,
producing the result 3. The invocation

traceFractran [3%2] 144
produces the result [144,216,324,486,729], where 144 = 2432 and 729 = 36.

A more complex example is the program

primeprog = [17%91,78%85,19%51,23%38,29%33,77%29,95%23,77%19,1%17,
11%13,13%11,15%14 ,15%2 ,55%1]

which produces the prime numbers when given the initial value 2. Concretely, all n produced
during the execution of the program that are powers of two will have successive prime numbers
as exponents. The invocation

take 10 [x | x <- traceFractran primeprog 2, isPower0fTwo x],

where isPowerOfTwo returns True iff its argument is a power of 2, yields
[2,4,8,32,128,2048,8192,131072,524288,8388608]
which is

[2°1,2°2,2°3,2°5,2°7,2°11,2°13,2°17,2~19,2"23]


https://en.wikipedia.org/wiki/FRACTRAN
https://en.wikipedia.org/wiki/John_Horton_Conway

Donald Knuth John Horton Conway

Good FRACTRAN interpreters share many properties with FRACTRAN programmes: they
are concise, esoteric, and mystically beautiful. The submissions will hence be judged by their
number of tokens. For reference, a naive implementation using only material covered in the
lecture has 49 tokens, an optimized version by the MC Sr. makes due with 30.

Important: If you submit a competition exercise, you agree that we are allowed to publish
your name as part of the competition on our website. If you just want to submit a competi-
tion exercise as part of your homework without taking part in the competition, you can just
remove the {-WETT-}...{-TTEW-} comments of your submission.

Beware of bugs in the above code; I have only proved it correct, not tried it.
— Donald Knuth



https://en.wikiquote.org/wiki/Donald_Knuth#Quotes
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikiquote.org/wiki/Donald_Knuth#Quotes

