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Tutorial Exercises
Exercise T8.1 Is This a Type Class?
Define a type Fraction with one constructor Over :: Integer -> Integer -> Fraction to
represent fractions over integers.
1. Define an instance Num Fraction.
class Num a where
+), (=), () it a -> a -> a
negate troa -> a
fromInteger :: Integer -> a
-- The functions 'abs' and 'signum' should
-- satisfy the law: abs x * signum x = X
abs tra -> a
signum tra -> a

After each operation that may increase the numerator/denominator, the fraction should
be reduced as far as possible.

2. Haskell can automatically derive instances for Eq (and also Show) using deriving Eq. Is
this automatically derived instance useful in this case? If not, what should it look like?

Note:

e Num contains no division operator. (/) is defined by the typeclass Fractional. In a more
extensive library, one would hence declare Fraction as an instance of Fractional.

e The function fromInteger is used by Haskell to embed integers into the required type.
The expression 3 :: Fraction is hence equivalent to (fromInteger 3) :: Fraction.
The function fromRational in Fractional does the same for decimal numbers (e.g. 3.14).

Exercise T8.2 I Can’t See The Forest For The Trees

1. In a binary tree, we can only descend to the left or to the right. Define a data type Tree
with constructors Leaf and Node for binary trees.

2. Implement a function sumTree :: Num a => Tree a -> a that returns the sum of all
values in a tree.

3. Implement a function cut :: Tree a -> Integer -> Tree a that cuts off a tree after
a given height.
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4. Implement a function foldTree :: (a -> b -> b) -> b -> Tree a -> b that folds a
function over a tree. The fold should process the right children of a node first, then the
node itself, and lastly the left children.

5. Use foldTree to implement a function inorder :: Tree a -> [a] that returns all ele-
ments of a tree in left to right order.

6. Use foldTree to implement a function findAll :: (a -> Bool) -> Tree a -> [al
that returns an all elements of a tree that satisfy a given predicate.

Exercise T8.3 by simp

Give alternative definitions with as few parameters to the left of the equality symbol as possible
for the following functions. Rewrite all A-expressions and do not introduce new ones. Make use
of the combinators in Data.Function.

f1 xs = map (\x -> x + 1) xs

f2 xs = map (\x -> 2 * x) (map (\x -> x + 1) xs)

£f3 xs filter (\x -> x > 1) (map (\x -> x + 1) xs)
f4 fs foldr (\f acc -> f acc) 0 (map (\f -> f 5) £fs)
f5 f g x = £ (g x)

f6 £ (x,y) = f xy

f7 £ x y z f zy


http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Function.html

Homework

You need to collect 7 out of 9 points (P) to pass this sheet.

Exercise H8.1 Homegrown Trees [1: 1P, 2a: 1P, 2b+c: 1P, 2d: 1P]

We define the recurisve datatype tree with

data Tree a = Leaf | Node (Tree a) a (Tree a)

for which we provide you with a function showGraphviz :: Show a => Tree a -> String
that prints a tree in dot-format.

1. For this definition of trees write a function symmetric :: Eq a => Tree a -> Bool that
determines whether a tree is symmetric along its vertical axis. See Figure 1 for examples.
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Figure 1: The first tree is symmetric while the second and third a not. For the second tree the shapes of
the subtrees do not match. In the third tree the shape of the subtrees match but they contain different
nodes.

2. The remainder of this task is about binary search trees (BST). These are trees where all
the nodes in the left subtree of a node have a strictly smaller value than the node itself
whereas the nodes in the right subtree have strictly larger value. This holds for all nodes
in the tree.

a) Write a function isBST :: Ord a => Tree a -> Bool that checks whether a tree is
a binary search tree.

b) Write a function isAlmostComplete :: Tree a -> Bool that determines whether a
tree t is an almost complete binary tree, i.e. every level of the tree t, except possibly
the last, is completely filled with nodes.

¢) Implement a function buildBST :: Ord a => [a] -> Tree a that builds an almost
complete BST out of a sorted list.

d) Finally, come up with a procedure

rangeSubtree :: 0Ord a => Tree a -> (a, a) -> Tree a
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that only retains those nodes in the tree whose values are within the specified (in-
clusive) range. Subtrees whose parents are not retained may need to be re-attached
such that the result is still a BST.

Exercise H8.2 (Competition) SCHUFA Madness [1P]

Just recently, the MC Jr had to request a SCHUFA-Selbstauskunft® for his unpleasant adventure
“Find an affordable place in Munich”. One day, after one of his very long strolls on the campus,
he received the letter expecting nothing else than a perfect score. Surprisingly, the SCHUFA
just awarded him a 96%, meaning “Geringes bis iiberschaubares Risiko”. Bewildered, he dug
through his past few bank statements, discovering that his balance had more swings than a
vibrating guitar string.

He very quickly realised that the SCHUFA does not provide any transparent measure as to how
such swings influence the final SCHUFA-score. He hence decided to invent his own measure of
financial accountability: the “SHOEFA-score”. The SHOEFA-score counts the number of left-
to-right sign changes in a sequence of balances. Any zeros are ignored in the scoring process,
e.g. [1,0,1] has a SHOEFA-score of 0 and [1,0,-1] has a SHOEFA-score of 1.

The MC Jr wants to publish an app (that he then sells for $3$) that computes this score. He
hence asks you for your help to implement a function

shoefa :: (Num a, 0Ord a) => [a] -> Int

that computes the SHOEFA-score with the prospect of some shares ($») for the solutions taking
the fewest number of tokens.

Important: If you submit a competition exercise, you agree that we are allowed to publish
your name as part of the competition on our website. If you just want to submit a competi-
tion exercise as part of your homework without taking part in the competition, you can just
remove the {-WETT-} ... {-TTEW-} comments of your submission.

Exercise H8.3 Sturm und Drang [1+2: 1P, 3: 1P, 4+5+6: 1P, 7+8+9: 1P]

The goal of this exercises is to extend our (Laurent) polynomial library from sheet 3. We use
the same encoding as on sheet 3, except that this time, we work with polynomials over arbitrary
integral domains. An integral domain is a non-zero (i.e. the carrier is not a singleton set)
commutative ring without zero divisors, that is ab # 0 whenever a # 0,b # 0.

For this, we define the following polynomial type: data Poly a = Poly [(a, Integer)]. We
will assume further constraints on the type variable a as needed when implementing our func-
tions. Most notably, we will use Num a constraints for our carrier a. Strictly speaking, Num a
does not require a to be an integral domain, but we might as well just assume it does for this
exercise.

!of course he made use of § 34 BDSG to request a free one
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We already provide you with functions for addition (polyAdd) and derivation of a polynomial
(polyDeriv) in the template. For tasks 5-9, you can assume that all exponents of the polynomial
are nonnegative.

1. Create an instance Show (Poly a) assuming that there is an instance Show a. Examples:

show (Poly [(1,-2),(2,3)] :: Poly Int) = 1x"{-2) + 2x~{3}
show (Poly [] :: Poly Imnt) = O

2. Write a function polyShift :: (Eq a, Num a) => (a, Integer) -> Poly a -> Poly a
that multiplies a monomial cz® with a polynomial.

3. Create an instance Num (Poly a) given that Eq a and Num a. You can define the functions
abs and signum as undefined.

4. Write functions

leadCoeff :: Num a => Poly a -> a
degree :: Poly a -> Integer

that return the leading coefficient and degree of a polynomial, respectively. The leading
coefficient of a polynomial is the coefficient of the monomial with the highest exponent
contained in the polynomial. Similarly, the degree of a polynomial is the exponent of the
monomial with the highest exponent contained in the polynomial. Conventions:

leadCoeff []1 = O
degree [1 = -1
5. Write a function
polyDivMod :: (Fractional a, Eq a) => Poly a -> Poly a ->

(Poly a, Poly a)

such that polyDivMod p q computes the quotient and remainder of the polynomial division
p/q. If we call the quotient s and the remainder r then s and r are the unique polynomials
with deg(r) < deg(q) and p = ¢s + r. Conventions: p/0 = 0 and pmod 0 = p. The
pseudocode for polynomial long division in Figure 2 might be of help.

6. Write functions
polyDiv :: (Fractional a, Eq a) => Poly a -> Poly a -> Poly a
polyMod :: (Fractional a, Eq a) => Poly a -> Poly a -> Poly a
that return the quotient and remainder of the polynomial division p/q, respectively.

7. Write a function polyEval :: Num a => Poly a -> a -> a that evaluates a polynomial
at a given position.

8. The Sturm chain or Sturm sequence — named after Jacques Charles Frangois Sturm — of a
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function p / q:
require q /= 0

s =0

r = p -- at each step p = q * s + r

while r /= 0 && degree r >= degree q:
t = lead r / (lead q) -- divide the leading terms
s = s + t

r=1r -1t % ¢
return (s, r)

Figure 2: Pseudo code for polynomial long division. Source: https://en.wikipedia.org/wiki/
Polynomial_long_division

polynomial p is the sequence of polynomials recursively defined by

Ppo =D,
p1 = polyDeriv(p),
pi+1 = —polyMod(p;—1,pi).
Write a function sturm :: (Fractional a, Eq a) => Poly a -> [Poly a] that com-
putes the Sturm sequence up to but excluding point ¢ where p; = 0.

9. Let p(x) be a polynomial over R and py, ..., p; be its Sturm sequence. Sturm’s Theorem
states that the number of distinct real roots of p in the half-open interval (a,b] is given by
the number of sign changes in pg(a),...,p;(a) subtracted by the number of sign changes
in po(b), ..., pi(b) provided that neither a nor b is a multiple root of p.

Use Sturm’s Theorem to write a function
countRootsBetween :: Poly Rational -> Rational -> Rational ->

Int

such that countRootsBetween p a b computes the number of distinct real roots of p €
Q[z] in the interval (a,b]. You can assume that neither a nor b is a multiple root of p.

Hint: Use the SHOEFA-score

Trees sprout up just about everywhere in computer science.

— Donald Knuth in “The Art of Computer Programming” Vol. IV
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