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Tutorial Exercises

Exercise T9.1 Nonempty Lists

When working with lists, there are often situations in which one needs to make sure that they
contain at least one element. When trying to access the head of a list, for instance, one could
wrap the call to head like so:

if length xs > 0 then

... head xs ...

else

error "something went utterly wrong"

This approach still causes run time errors when the programmer makes a mistake, however. In
Haskell, one uses the type system to catch these errors at compile time by constructing a custom
data type that simply does not include invalid values.

1. Define a data type NonEmptyList, which represents a list that contains at least one element.

2. Write conversions between [a] and NonEmptyList a.

fromList :: [a] -> Maybe (NonEmptyList a)

toList :: NonEmptyList a -> [a]

3. Implement the functions nHead, nTail and nAppend in analogy to head, tail and (++).

4. Write a function nTake :: Integer -> NonEmptyList a -> Maybe (NonEmptyList a)

that takes the first n elements of a non-empty list. If the list does not contain enough
elements, nTake should return Nothing.

Note that your definitions need to fulfill the following criteria:

• They may not use library functions.

• They may not cause runtime errors or loop indefinitely for any inputs.

Exercise T9.2 (Mirror . Mirror) On the Wall = On the Wall

Given the following definitions
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data Tree a = Leaf | Node (Tree a) a (Tree a)

mirror Leaf = Leaf

mirror (Node l v r) = Node (mirror r) v (mirror l)

id x = x

(f . g) x = f (g x)

show that mirror . mirror = id. You will have to use structural induction on trees.

Exercise T9.3 Sounds Logical, Am I Right?

You have already seen a data type of propositional formulas in the lecture. Moreover, you have
seen a function to transform those formulas into negation normal form (NNF). In this exercise
sheet, we change the definition of our formula data type such that one can only build formulas
in NNF to begin with.

An atom is either a variable labelled by a string or the value “T” representing truth. A literal
is a positive or negative atom. Finally, a formula is either a literal, a conjunction of formulas,
or a disjunction of formulas.

1. Define data types for atoms, literals, and formulas. Make your definitions derive instances
for Eq and Show.

2. Define values top :: Literal and bottom :: Literal representing truth and falsity,
respectively.

3. A clause is a disjunction of literals. A formula is in conjunctive normal form (CNF) if it
is a conjunction of clauses. We define the corresponding types

type Clause = [Literal]

type ConjForm = [Clause]

By convention, an empty clause corresponds to falsity since it is the neutral element of
the disjunction operator. Similarly, [] :: ConjForm corresponds to truth – as it is the
neutral element of the conjunction operator.

Define a function conjToForm :: ConjForm -> Form that transforms a formula given as
a list of clauses to a formula as encoded in subtask 1. Examples:

conjToForm [] = L top

conjToForm [[]] = L bottom

conjToForm [[], []] = L bottom :&: L bottom

conjToForm [[Pos $ Var "v1", Neg $ Var "v2"], [Neg $ Var "v1", top]]

= (L (Pos (Var "v1")) :|: L (Neg (Var "v2"))) :&:

(L (Neg (Var "v1")) :|: L top)

Hint: It might be useful to first define a function of type Clause -> Form.
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4. (Optional) In the lecture, we defined the type of valuations: type Valuation = [(Name,Bool)].
Write a function substConj :: Valuation -> ConjForm -> ConjForm that replaces the
variables of a formula by the values as specified in the passed valuation. Examples:

substConj [("v",True)] [[Neg $ Var "v"],[Pos $ Var "w"]]

= [[ bottom],[Pos (Var "w")]]

substConj [("v",False )] [[Neg $ Var "v"],[Pos $ Var "w"]]

= [[top],[Pos (Var "w")]]

substConj [("v",True),("w",False )]

[[Neg $ Var "v"],[Pos $ Var "w", Neg $ Var "w"]]

= [[ bottom],[bottom , top]]
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Homework

You need to collect 5 out of 7 points (P) to pass this sheet.

Exercise H9.1 Sum Sum Sumsidumbibum! [2P]

Show that the sumTree function from T8.2 indeed works as expected, i.e. prove the equivalence

sum (inorder t) = sumTree t

using structural induction on trees.

Exercise H9.2 I Have It So SAT! [1: 1P, 2: 1P, 3: 1P, 4+5: 2P]

We extend our work from the tutorial. Our goal will be to build a SAT-solver. A SAT-solver takes
a propositional formula F and decides whether F is satisfiable by some valuation or not. You
have already seen a simple brut-force SAT-solver in the lecture. In this exercise, we will create
a more efficient version. We provide you with some QuickCheck generators in a separate file on
moodle that you can use to test your functions (or to stress test your competition submission).

Trivia

Though, in general, it is rather expensive to decide whether a propositional formula is satis-
fiable (unless P=NP), modern SAT-solvers are amazingly fast for many problem instances
and were even used to solve longstanding mathematical conjectures.

Just 3 years ago, Marijn Heule used a SAT-solver to answer the boolean Pythagorean triples
problem with a mind-boggling 200 terabytes proof: it is not possible to colour each of the
positive integers either red or blue so that no three a, b, c ∈ N+ satisfying a2 + b2 = c2 are
all the same colour.

We begin by writing some utility functions.

1. Write a function simpConj :: ConjForm -> ConjForm that simplifies a formula F in CNF
in the following way:

a) For every clause C in F containing top, simplify C to [top].

b) For every clause C in F , remove every occurrence of bottom.

c) Remove every clause C in F that has been simplified to [top].

d) If F contains a clause C that has been simplified to the empty clause, simplify F to
[[]].

Examples:

simpConj [[top], [top , Pos $ Var "v"]] = []

simpConj [[ bottom], [Neg $ Var "v"]] = [[]]

simpConj [[Neg $ Var "v"], [bottom , Neg $ Var "v"]]

= [[Neg (Var "v")],[Neg (Var "v")]]
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simpConj [[Pos $ Var "v", bottom], [Pos $ Var "v", top]]

= [[Pos (Var "v")]]

simpConj [[Neg $ Var "v"],[Neg $ Var "v"],

[Pos $ Var "w", Neg $ Var "w"]]

= [[Neg (Var "v")],[Neg (Var "v")],[Pos (Var "w"),Neg (Var "w")]]

2. Write a function cnf :: Form -> ConjForm that transforms a formula into CNF. Note
that if φ = φ1 : & : · · · : & : φn and ψ = ψ1 : & : · · · : & : ψm are in CNF, then the CNF of
ψ : | : φ can be obtained by computing

(φ1 : | : ψ1) : & : · · · : & : (φ1 : | : ψm)

: & : (φ2 : | : ψ1) : & : · · · : & : (φ2 : | : ψm)

...

: & : (φn : | : ψ1) : & : · · · : & : (φn : | : ψm)

Make sure that, for every cf :: ConjForm, your functions satisfy the following property:
simpConj cf == simpConj $ cnf $ conjToForm cf. Example:

let (a,b,c,d) = (Pos (Var "a"), Pos (Var "b"),

Pos (Var "c"), Pos (Var "d"))

cnf $ (L a :&: L b) :|: (L c :&: L d)

= [[a, c], [a, d], [b, c], [b, d]]

3. A typical, simple implementation of a SAT-solver for formulas in CNF can be given as
follows:

Algorithm 1: Simple SAT-solver for formulas in CNF

1 Function sat:
Input : Formula f in CNF
Output: True if f is satisfiable and False otherwise

2 let f ′ = simplify f in -- as described in H9.3.1
3 if f ′ contains no clauses then True

4 else if f ′ contains the empty clause then False

5 else
6 let v be a variable in f and b be a boolean value in
7 sat (subst v b f) or sat (subst v (not b) f) -- subst as described in T9.3.4

8 end

The efficiency of this SAT-solver greatly depends on its selection strategy for variables (cf.
line 5 above). Such a strategy returns a variable v contained in f and a boolean value to
substitute for v. In the best case, assigning v to b in f keeps f satisfiable (if it is satisfiable
to begin with). If not, the algorithm has to backtrack and substitute the negation of b for
v in f .
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Write a selection strategy selectV :: ConjForm -> Maybe (Name, Bool) such that selectV f

returns a variable v occurring in f and a boolean value b to assign to v. If f contains no
variables, Nothing must be returned.

Note: Your strategy does not have to be sophisticated, but of course, we encourage you
to implement some good heuristics.

4. (Competition) Next, implement a function

satConj :: ConjForm -> Maybe Valuation

that takes a formula f in CNF and returns an assignment satisfying f if such an as-
signment exists and Nothing otherwise. You might want to orientate yourself by the
pseudo-algorithm given above, which can easily be extended to also return a valuation in
case of a positive result.

It suffices to return a valuation val such that simpConj $ substConj val f = []. Moreover,
you can assume that all variables are labelled by integers n with 1 ≤ n ≤ u for some
u :: Int.

For the competition, the MC Jr will evaluate your solver against different kind of problem
instances, increasing the size of the instance in each step if needed. Some of the formulas
that he will generate are, for example:

a) Formulas containing at least one positive literal for each clause

b) Formulas containing variables that occur strictly positively or negatively

c) Formulas where certain variables occur very frequently

d) Formulas containing very short and very long clauses

e) Formulas that have at most one positive literal for each clause (so-called Horn clauses)

f) Formulas that are completely random

For each class, the MC Jr creates a ranking and assigns a weight to the given class. The list
above is ranked by importance, that is winning run a) gives you the fewest points, running
run f) the most. However, the list may be incomplete and further classes of formulas will
be tested.

Some hints to optimise your implementation:

a) Search for “DPLL” to read about simple but efficient selection strategies.

b) List are simple but can be slow (e.g. for lookups) – use efficient data structures.1

c) Optimise your pre-processing and simplification steps.

d) Tune your selection strategy. For example, prioritisation of short clauses and fre-
quently occuring variables can be useful.

e) Check out conflict-driven clause learning (CDCL) for an improvement of DPLL (this
will require some more work).

1But first makes sure that they are allowed by the submission system here
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Please leave some comments for the MC Jr in order to understand your code. He is looking
forward to all your submissions!

Important: If you submit a competition exercise, you agree that we are allowed
to publish your name as part of the competition on our website. If you just want
to submit a competition exercise as part of your homework without taking part in
the competition, you can just remove the {-WETT-} . . . {-TTEW-} comments of your
submission.

5. Lastly, define a function sat :: Form -> Maybe Valuation that solves the satisfiability
problem for an arbitrary formula.

The best defense against logic is ignorance.

— Blaise Pascal
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