Technical University of Munich WS 2019/20
Chair for Logic and Verification 10.01.2020
Prof. Tobias Nipkow, Ph.D. Deadline: 21.01.2020, 23:59
J. Radle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification
Sheet 12

Tutorial Exercises

Exercise T12.1 Abstract Data Types: Maps

Note: Please use the templates AssocList.hs and AssocListTests.hs provided on moodle
for this exercise.

You have already seen association lists Eq k => [(k,v)] as a way to represent maps with keys
k und values v. In order to prevent user from creating invalid association lists (e.g. containing
multiple values for some key), we want to hide the implementation in a module.

1. Define a module AssocList that only exports a type Map k v and the following functions:

newtype Map k v =

empty :: Map k v

insert :: Eq k => k -> v -> Map k v -> Map k v
lookup :: Eq k => k -> Map k v -> Maybe v
delete :: Eq k => k -> Map k v -> Map k v

keys :: Map k v -> [k]

Calling insert with an existing key should replace the associated value. Internally, the
maps should be represented using association lists.

Note: Prelude also exports a function lookup. To prevent naming conflicts, you can hide
this import using import Prelude hiding (lookup).

2. Define a function invar :: Eq k => Map k v -> Bool in AssocList that checks whether
the map does not contain duplicate keys. Then define QuickCheck properties in a separate
module that check whether invar is invariant under all functions returning a map as
discussed in the lecture (slide 340).

Note: To check your properties, say prop_invarInsert, you need to explicitly tell
QuickCheck the types of the values to generate. For example:

quickCheck (prop_invarInsert :: Int -> String ->
AL .Map Int String -> Property)

3. We next check if our implementation (imported as AL.Map) behaves correctly when com-
pared to the Map datatype provided by Data.Map from the package containers (imported
as DM.Map). Define a function hom :: Ord k => AL.Map k v -> DM.Map k v that trans-
forms our maps to the one provided by the containers library. Then check whether AL.Map
simulates DM.Map by defining QuickCheck properties for every function in AssocList as
discussed in the lecture (slide 340).

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map.html

Exercise T12.2 Substitute Teacher

We consider a simple programming language, namely A-calculus. It is the basis for most func-
tional programming languages including Haskell. A program in A-calculus is built up from terms,
which are either

e just a variable, e.g. x,
e an anonymous function definition (Az. T), which binds a variable z in term 7', or
e a function application T' U where both T and U are terms themselves.

Note that bound variable names are interchangeable whereas this is not the case for free variables.
For example, the terms (Az. x y) and (\z. z y) are equal while the terms (Az. z y) and (A\z. x 2)
are not equal. Start by defining a datatype Term in Haskell that models the A-calculus using
Strings for variable names. On this datatype, implement the following functions:

1. Instantiate Show for Term by representing variables as just their name, A-abstractions as
(\x -> T) like in Haskell and use spaces for function application. Bonus: Omit unneces-
sary parenthesis.

2. Define freeVars :: Term -> [String] which collects all free variables in a term, i.e.
variables that are not bound by an enclosing A-abstraction.

3. Implement a function substVar :: String -> Term -> Term -> Term which, when called
with substVar x r t, replaces all free occurrences of x in t by the term r. Important:
the function substVar makes a key assumption about the terms t and r. To find out what
the assumption is, think about what happens when substituting = with the variable y in
the equivalent terms (Ay. z y) and (Az. z 2).

Homework

You need to collect 3 out of 4 points (P) to pass this sheet.

Exercise H12.1 Abstract Data Types: Vector [1P]

In this exercise you will model Vectors, which are essentially resizable arrays. By convention,
we will index the cells of our vectors beginning with 0.

Define a module Vector that only exports a type Vector a and the following functions:

newtype Vector a =

newVector :: Int -> Vector a

size :: Vector a -> Int

capacity :: Vector a -> Int

resize :: Vector a -> Int -> Vector a

set :: Vector a -> a -> Int -> Maybe (Vector a)
get :: Vector a -> Int -> Maybe a

https://en.wikipedia.org/wiki/Lambda_calculus

newVector n should return an empty vector of size n. size returns the size of the vector,
whereas capacity returns the number of empty cells in the vector.

resize changes the size of the vector by either adding new empty cells or by truncating the
cells with the highest indices.

set v x i should set the cell at index i to x. If i is not a valid index, the function should
return Nothing.

get v i returns the element in cell i. If that cell is empty or if i is not a valid index, it should
return Nothing.

Exercise H12.2 ¢ 3FW< PV [1P]

One gloomy night, the MC Jr realised that valuable information on his laptop (cat pictures) is
not encrypted. He hence decides to take action and remembers that some professor once taught
him how to design proper encryption schemes. However, all the MC Jr remembers is that, yet
again, it has something to do prime numbers. Even though he is well aware of the staggering
value of his cat pictures and that all hand-crafted encryption schemes are doomed to failure, he
still decides to roll his own.

1. (Competition) Write a function encrypt :: String -> String that encrypts a string
in the following way: Let c¢1---¢, = s be the characters of s and p1,...,p; be all prime
numbers smaller or equal than n. Then encrypt s will remove the characters at positions
p1,...,pj from s and prepend them to the resulting string. For example:

encrypt "Hallo" = "aloH1"
encrypt "unbreakable" = "nbekeuraabl"

encrypt "mever roll your own encryption scheme" =
"evrr oonco ene ollyur w enryptinschem"

Then write a function decrypt :: String -> String that decrypts a string.

For the competition, the MC Jr asks you to code-golf both the encryption and decryption
function until they look more undecipherable than any word encrypted by the encryption
scheme; the fewer tokens, the better. You can use the provided primes and isPrime
functions from the template without including them in the {-WETT-}...{-TTEW-} tags.
00 uGdlck!

Important: If you submit a competition exercise, you agree that we are allowed
to publish your name as part of the competition on our website. If you just want
to submit a competition exercise as part of your homework without taking part in
the competition, you can just remove the {-WETT-}...{-TTEW-} comments of your
submission.

2. Write a function main :: I0 () that reads a filename f and an action string from stdin
(on separate lines). If the action string is “encrypt”, the function should encrypt the

Philipp Wadler (designer of Haskell) in his legendary lambda calculus superman costume

contents of the file and write the encrypted version to the file f.encrypt (where f is the
original filename). Otherwise it should decrypt the file, writing to f.decrypt.

Exercise H12.3 Capture Me If You Can! [1: 1P, 2: 1P]

Implement the following functionality for the datatype Term of A-terms:

1. In the tutorial exercise we saw that two terms are equivalent if we can rename the bound
variables of the former such that we obtain the latter term. For example, we can rename
x to y in (Az. x z) to obtain equivalent term (Ay. y z). This is called a-equivalence.
Instantiate Eq for Term such that (==) accounts for a-equivalence.

2. Implement a function betaRed :: Term -> Term that performs S-reduction on a lambda
term of the form (Az. T') U, i.e. betaRed produces the term 7" with all free occurences of
x in T replaced by U (free occurences of x in T" are bound by the enclosing \). As an
example, (Az. z z) (x y) reduces to (x y) z. Note: you can use substVar from the tutorial
but you may need to rename bound variables beforehand, e.g. (Az.\y. x y) y should result
in a term that is a-equivalent to (A\a. y a).

Nenn es dann, wie du willst,
Nenn’s Gliick! Herz! Liebe! Gott
Ich habe keinen Namen

Dafir! Gefiihl ist alles;

Name ist Schall und Rauch,
Umnebelnd Himmelsglut.

— Goethe’s Faust

https://en.wikipedia.org/wiki/Philip_Wadler
https://youtu.be/IOiZatlZtGU?t=2007
https://en.wikipedia.org/wiki/Faust

