
Technical University of Munich WS 2019/20
Chair for Logic and Verification 17.01.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 28.01.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification
Sheet 13

Tutorial Exercises

Exercise T13.1 Huffman Coding

In the lecture, you were introduced to Huffman’s compression algorithm. In this exercise you will
write a program that uses this algorithm to compress files. Concretely, we ask you to implement
the following functions:

compress :: String -> FilePath -> IO ()

decompress :: FilePath -> IO String

compress s file should compress the string s and store the result in <file>.huff. The tree
used for decompression should be saved as <file>.code.

The invocation decompress file should read <file>.code to decompress <file>.huff and
return the decompressed string.

Hint: You can convert the trees and bitlists defined in Huffman.hs to and from strings using
show and read, respectively.

Note that no actual compression is achieved here, because we print the bitlists and the encoding
tree quite verbosely. To write compact representations of these datastructures, one could e.g. use
the bitstring library.

Exercise T13.2 Arithmetic Expressions

In this exercise, we consider the datatype AExp which models addition and multiplication on
integers:

data AExp = Val Integer | Add AExp AExp | Mul AExp AExp

deriving Eq

We define a function eval to evaluate an expression to an integer, and a function simp that
simplifies expressions of the form 0 + e to e:

eval (Val i) = i

eval (Add a b) = (eval a) + (eval b)

eval (Mul a b) = (eval a) * (eval b)

simp (Val i) = Val i

simp (Mul a b) = Mul (simp a) (simp b)

simp (Add a b) = if a == Val 0 then simp b else Add (simp a) (simp b)

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

Your task is to prove that this simplification preserves the value of an expression, i.e. that the
following equation holds:

eval (simp e) = eval e

You may use these familiar axioms, no further rules for arithmetic should be required:

axiom addZero: x + 0 = x

axiom zeroAdd: 0 + x = x

Note that CYP cannot handle this proof, because it supports neither case distinction on
integers nor rewriting with Haskell equalities (==). For the purposes of this exercise (and
the exam), you may use case distinctions on == and use expressions of the form x == y to
rewrite x to y. Here is a generic example:

To show: ... (if x == 10 then y else z) ... = ...

Proof by case analysis on x == 10

Case True

Assumption: x == 10

Proof

... (if x == 10 then y else z) ...

(by Assumption) = ... y ...

...

... = ... x ...

(by Assumption) = ... 10 ...

QED

Case False

Assumption: x /= 10

Proof

... (if x == 10 then y else z) ...

(by Assumption) = ... z ...

...

QED

QED

2

Homework

You need to collect 2 out of 3 points (P) to pass this sheet.

Exercise H13.1 Isn’t that obvious?! [1P]

In this homework you will work with a datatype that models the natural numbers, which is
defined as

data Nat = Z | Suc Nat

Here, Z represents 0, and all other natural numbers n are represented as successors of n − 1.
That is, 1 is represented as Suc Z, 2 as Suc (Suc Z) and so on.

We can define addition on this type recursively

add Z m = m

add (Suc n) m = Suc (add n m)

Your task is to prove that this definition is commutative:

goal add n m .=. add m n

Hint: You will need at least two lemmas.

Exercise H13.2 Serial Vectoriser [1: 1P, 2: 1P]

In preparation for this weeks competition, your tasks is to generate a series of Scalable Vector
Graphics (SVGs). The series of SVGs can then be converted to series of JPEGs which we can
concatenate to a video with ffmpeg. The Übungsleitung generously provides the code for this
conversion in the template so you can focus all your attention on handling the SVG files. In
particular we consider only a minimal subset of the SVG standard:

• rectangles whose corresponding XML-tag is <rect> and which have the attributes width

and height,

• ellipses whose tag is <ellipse> and which have attributes rx and ry describing their radii
in the x and the y direction, and

• groups whose tag is <g> and contain rectangles and ellipses. (In general groups may also
contain other groups, but you will not be required to handle this)

All of the above have two additional attributes in common, namely id and transform. The
former will be used to address specific SVG elements in a SVG while the latter is useful for
manipulating elements to generate animations. A transform consists of the three components
rotate, scale, and translate. While rotate is a single float, scale and translate are a pair of
floats to account for both the x and the y direction. In Haskell, we can represent transform as
a record:

3

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://linux.die.net/man/1/convert
https://ffmpeg.org/
https://developer.mozilla.org/en-US/docs/Web/SVG
https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

data Transform = Transform {

rotate :: Double ,

scale :: (Double , Double),

translate :: (Double , Double)

}

Records are similar to ordinary data constructors but with the advantage that we automatically
obtain accessor functions for the fields of a record, e.g. we can access the first field of a specific
Transform t using rotate t. When constructing an SVG element the transform should initially
be set like follows:

Transform{rotate=0, scale =(1,1), translate =(0 ,0)}

Your task is to implement the functions

1. paint :: String -> String

2. animate :: [(String, Transform -> Transform)] -> String -> [String]

paint takes geometric objects encoded as a String (see below for the input format) and returns
a string encoding of the corresponding SVG. You should write data types that represent SVGs
in order to accomplish this. (You may use records as shown in the definition of Transform)

animate takes a list of tuples ts that represent transformations that should be applied to parts
of the SVG in order to produce an animation. Like paint it also takes a string s that encodes
geometric objects which should be used as the initial SVG for the animation.

The input format looks as follows:

group 1:

ellipse 2 27.7031 36.4382

rectangle 3 31.5652 34.9351

group 4:

ellipse 5 14.5585 38.6296

Every ellipse or rectangle belongs to exactly one group, which is printed as group <id>:. The
elements belonging to the group are shown on the subsequent lines in the format ellipse <id> <rx> <ry>

or rectangle <id> <width> <height>.

Each tuple (i, f) in ts contains a function f which is to be applied to all SVG elements with
the id i in the current SVGs. By applying the functions in ts iteratively to the initial SVG s,
the function animate creates a list of strings representing SVGs. An example invocation could
look like follows:

>>> mapRotate f Transform{rotate=r, scale=s, translate=t} =

Transform{rotate=f r, scale=s, translate=t}

>>> mapScale f Transform{rotate=r, scale=s, translate=t} =

Transform{rotate=r, scale=f s, translate=t}

>>> -- Print all elements of the list to the console

4

>>> mapM_ putStrLn $ animate [

("1", mapScale (\(sx , sy) -> (2 * sx , 0.5 * sy))),

("2", mapRotate (+ 90))

] ...

<svg viewBox ="-25 -25 50 50" xmlns="http :// www.w3.org /2000/ svg">

<rect id="1" width ="20" height ="15"

transform =" rotate (0) scale (1 1) translate (0 0)"/>

<g id="2" transform =" rotate (0) scale(1 1) translate (0 0)">

<ellipse id="1" rx="2" ry="3"

transform =" rotate (0) scale (1 1) translate (0 0)" />

</g>

</svg >

<svg viewBox ="-25 -25 50 50" xmlns="http :// www.w3.org /2000/ svg">

<rect id="1" width ="20" height ="15"

transform =" rotate (0) scale (2 0.5) translate (0 0)"/>

<g id="2" transform =" rotate (0) scale(1 1) translate (0 0)">

<ellipse id="1" rx="2" ry="3"

transform =" rotate (0) scale (2 0.5) translate (0 0)" />

</g>

</svg >

<svg viewBox ="-25 -25 50 50" xmlns="http :// www.w3.org /2000/ svg">

<rect id="1" width ="20" height ="15"

transform =" rotate (0) scale (2 0.5) translate (0 0)"/>

<g id="2" transform =" rotate (90) scale(1 1) translate (0 0)">

<ellipse id="1" rx="2" ry="3"

transform =" rotate (0) scale (2 0.5) translate (0 0)" />

</g>

</svg >

5

Exercise H13.3 The art of ending the Wettbewerb

Your task in this very last competition exercise is to generate a pixel image, a vector image, or
a video in one of the customary formats (z.B. PNG, SVG, MP4). To realise that you can use
and extend the code from the previous exercise. Furthermore, we allow and encourage you to
utilise third-party libraries. Some starting points are given by the links below.

http://www.haskell.org/haskellwiki/Applications_and_libraries/Graphics

https://hackage.haskell.org/package/JuicyPixels

The generated imagery will be graded by all the MCs with the criteria being aesthetics (nice
picture) and technology (impressive code). As an inspiration for aesthetics consider the last
iteration of this competition exercise and for technology you can consider using lenses to make
modifying nested data structures elegant.

Important: Your submission to the Wettbewerb should contain WETT tags and an ex-
ample image created with your program. Furthermore, it should contain instructions on
how to generate the image(s). If your code uses libraries that are not enabled on the server,
you may send it directly to fpv@in.tum.de.

If you truly love Nature, you will find beauty everywhere.

— Vincent van Gogh

6

http://www.haskell.org/haskellwiki/Applications_and_libraries/Graphics
https://hackage.haskell.org/package/JuicyPixels
https://www21.in.tum.de/teaching/info2/WS1415/wettbewerb.html#woche14
https://www21.in.tum.de/teaching/info2/WS1415/wettbewerb.html#woche14
https://hackage.haskell.org/package/lens
mailto:fpv@in.tum.de

