
Technical University of Munich WS 2019/20
Chair for Logic and Verification 24.01.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 04.02.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC M. Eberl

Functional Programming and Verification
Sheet 14

Tutorial Exercises

Exercise T14.1 Redexes

Identify all redexes in the following Integer-expressions. Determine for each redex whether it
is innermost, outermost, both, or neither.

1. 1 + (2 * 3)

2. (1 + 2) * (2 + 3)

3. fst (1 + 2, 2 + 3)

4. fst (snd (1, 2 + 3), 4)

5. (\x -> 1 + x) (2 * 3)

Exercise T14.2 Reductions

Evaluate the following expressions according to Haskell’s evaluation strategy:

map (*2) (1 : threes) !! 1

(\f -> \x -> x + f 2) (\y -> y * 2) (3 + 1)

head (filter (/=3) threes)

Which evaluations do not terminate?

The functions used in the expressions above are defined as follows:

map _ [] = []

map f (x:xs) = f x : map f xs

filter _ [] = []

filter f (x:xs) | f x = x : filter f xs

| otherwise = filter f xs

(x:xs) !! n | n == 0 = x

| otherwise = xs !! (n - 1)

threes = 3 : threes

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

Exercise T14.3 Nooooooonacci

The lecture presented the following implementation of fib which produces an infinite list con-
taining all Fibonacci numbers, i.e. fib = [0,1,1,2,3,5,8,13,...].

fib :: [Integer]

fib = 0 : 1 : fib'
where

fib' = zipWith (+) fib (tail fib)

Explain which components of the implementation require lazy evaluation such that the function
can be (partially) evaluated. Which functions can we use to evaluate the function partially?

Now, consider an alternative implementation for fib.

fib2 :: [Integer]

fib2 = map f [0..]

where

f 0 = 0

f 1 = 1

f n = fib2 !! (n - 1) + fib2 !! (n - 2)

Compare the latter implementation with the former one. Which function performs better and
how could the slower function be improved?

Since normal Fibonacci numbers are boring, we want to generalise them to n-onacci numbers.
We can construct the n-onacci numbers by letting f0 = 0, f1 = 0, . . . , fn−2 = 0, fn−1 = 1 and
fa = fa−n + fa−n+1 + · · · + fa−1. Implement the function nonacci :: Int -> [Integer] in
two ways:

1. Come up with a function zipWithN ([a] -> b) -> [[a]] -> [b] and define nonacci

analogously to fib.

2. Use fib2 as a template to define nonacci.

2

Homework

You need to collect 4 out of 5 points (P) to pass this sheet.

Exercise H14.1 Collatz Strikes Back [3P]

In the tutorial, we saw a very Haskellian take on the definition of the Fibonacci numbers. To
develop this further, we consider the more complicated (at least from the perspective of a number
theorist) Collatz function which is defined as

f(n) =

1 if n = 1,

f(n2) if n is even,

f(3n + 1) otherwise.

The Collatz conjecture postulates that for every n ∈ N it holds that f(n) terminates after finitely
many recursive calls. As the arguments to the recursive calls may increase in the odd case, it
may take a number of steps to reach 1. For example, if we start with n = 12 the sequence of
arguments is 12, 6, 3, 10, 5, 16, 8, 4, 2, 1, i.e. it takes 9 steps to reach 1. The goal is now to lazily
generate a list that contains the number of steps it takes to reach 1 for all n ∈ N. By convention,
we set the number of steps for n = 0 to 0.

Computing this list can be made efficient by memoising the step count for each number we
encounter. To avoid the expensive index lookup of lists, we use a tree as a memoisation data
structure. As the list of all step counts is infinite, the tree also has to be infinite. In Haskell, we
define the tree as follows:

data Tree a = Node a (Tree a) (Tree a)

Note that it is not possible to actually construct a Tree but the data type is still useful if we
partially evaluate a Tree that is assembled lazily. Your first task is to define a function

nats :: Tree Integer

that returns a tree containing each natural number exactly once and where the children of a
node should always have larger value than the node itself. Furthermore, define an operator

(!!!) :: Tree a -> Integer -> a

that performs a lookup in the tree, i.e. nats !!! i should return i. Finally, define a function
collatz_steps_list :: [Integer] that uses nats and (!!!) to efficiently construct the list
of all step counts of the collatz function in a lazy fashion.

Exercise H14.2 Probably approximately correct [1: 1P,2+3: 1P]

On exercise sheet 8, you wrote a library for polynomials, including a function that determines
the number of roots within a range by applying Sturm’s theorem. In this exercise, your task is
to actually find those roots.

3

1. We begin by implementing a function to find a single root. We use the first derivative f ′

of our polynomial f and a guess xn to find a new (better) guess for the root using this
formula:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

This is Newton’s method. Use it to implement a function

newton :: (Eq a,Fractional a) => (Poly a) -> a -> [a]

where newton f guess returns an infinite list of approximations of the root, starting with
the initial guess.

Note: Be careful about division by 0.

2. Use Newton’s method to write a function

findRoots :: (Poly Rational) -> (Rational ,Rational) -> [[Rational]]

such that findRoots f (low,high) returns a list of infinite approximations of all roots
of the polynomial f in the (exclusive) range [low..high].

Hint: Use the countRootsBetween function from exercise 8 and repeatedly split the search
space.

3. Write a function

approxRoots :: (Poly Rational) -> (Rational , Rational) ->

Rational -> [Rational]

where approxRoots f (low,high) eps returns a list of approximations of roots of f in
the range [low..high] such that for each approximate root x, f(x) is at most ±eps.

Mathematics may not be ready for such problems.

— Paul Erdős (about the Collatz conjecture)

This is an extraordinarily difficult problem, completely out of reach of present
day mathematics.

— Jeffrey Lagarias (about the Collatz conjecture)

4

https://en.wikipedia.org/wiki/Newton%27s_method

