
Technical University of Munich

Eexam
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Funktionale Programmierung und Verifikation

Exam: IN0003 / Endterm Date: Wednesday 8th January, 2020
Examiner: Prof. Tobias Nipkow, Ph.D. Time: 13:00 – 15:00

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

Working instructions
• This exam consists of 16 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 40 credits.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one handwritten sheet of A4 paper
– one analog dictionary English ↔ native language without annotations

• Subproblems marked by * can be solved without results of previous subproblems.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

– Page 1 / 16 –

0

1

2

3

4

0

1

Problem 1 Type Inference (5 credits)

a)* Determine the most general type of these expressions.

1. (:[1,2])

2. foldr (\x y -> y ++ x) [] (where foldr :: (a -> b -> b) -> b -> [a] -> b)

3. (\f g x -> g $ f $ x)

4. map head . map (\f -> f "hello")

b)* Give a brief justification why these expressions do not type check.

1. (\f x -> if True then f x else f)

2. (\x y -> x : y : x y)

– Page 2 / 16 –

Problem 2 List Comprehension, Recursion, Higher Order Functions (6 credits)

Write a function halfEven :: [Int] -> [Int] -> [Int] that takes two lists xs and ys as input. The
function should compute the pairwise sums of the elements of xs and ys, i.e. for xs = [x0, x1, . . .] and
ys = [y0, y1, . . .] it computes [x0 + y0, x1 + y1, . . .]. Then, if the sum is even, the sum is halved and added to
the resulting list. An invocation of halfEven could look like follows:

halfEven [1, 2, 3, 4] [5, 3, 1] = [3, 2]

Implement the function in three different ways:

1. As a list comprehension without using any higher-order functions or recursion.

2. As a recursive function with the help of pattern matching. You are not allowed to use list comprehensions
or functions from the Haskell library.

3. Use higher order functions (e.g. map, filter, etc.) but no recursion or list comprehensions.

0

1

2

3

4

5

6

– Page 3 / 16 –

0

1

2

0

1

2

3

4

Problem 3 Obligatory Logic Exercise (6 credits)

We define the following types:

• An atom is either F (falsity), T (truth), or a variable:

type Name = String
data Atom = F | T | V Name deriving (Eq , Show)

• A conjunction is an atom or the conjunction of two conjunctions:

data Conj = A Atom | Conj :&: Conj deriving (Eq , Show)

• A database is a finite set of atoms that we simply model as a conjunction:

type Db = Conj

For example, the database {”v”, ”w”} can be modelled as A (V "v") :&: A (V "w").

a)* Write a function contains :: Db -> Atom -> Bool such that contains db a returns True if and only
if a is contained in db.

b)* Write a function implConj :: Conj -> Conj -> Bool such that implConj c1 c2 returns True if and
only if conjunction c1 logically implies conjunction c2. For example:

A F `implConj` c = True -- for any conjunction c
c `implConj` A T = True -- for any conjunction c
A (V "v") `implConj` A (V "v") = True
A (V "v") `implConj` A (V "v") :&: A (V "w") = False
A (V "w") :&: A (V "v") `implConj` A (V "v") :&: A (V "w") = True

– Page 4 / 16 –

Problem 4 Haskell has Class (5 credits)

We define a typeclass of integer containers as follows:

class IntContainer c where
-- the empty container
empty :: c
-- insert an integer into a container
insert :: Integer -> c -> c

Moreover, we define an extension of integer containers called IntCollection as follows:

class IntContainer c => IntCollection c where
-- the number of integers in the collection
size :: c -> Integer
-- True if and only if the integer is contained in the collection
contains :: Integer -> c -> Bool
-- c1 `subcolleq` c2 holds if and only if
-- every integer in c1 also occurs in c2
subcolleq :: c -> c -> Bool
-- extracts the smallest number in the collection
-- if such a number exists.
extractMin :: c -> Maybe Integer
-- "update f c" applies f to every element e of c.
-- If "f c" returns Nothing , the element is deleted;
-- otherwise , the new value is stored in place of e.
update :: (Integer -> Maybe Integer) -> c -> c

Assume there is a type data C with a corresponding IntContainer instance. Moreover, assume you are
given the following function:

-- "fold f acc c" folds the function f along c (in no particular order)
-- using the start accumulator acc.
fold :: (Integer -> b -> b) -> b -> c -> b

Define an instance IntCollection C. 0

1

2

3

4

5

– Page 5 / 16 –

– Page 6 / 16 –

Problem 5 Proof 1 (4 credits)

Given the type of natural numbers

data Nat = Z | Suc Nat

and the following definition of addition on these numbers

add Z m = m
add (Suc n) m = Suc (add n m)

show that addition is associative by proving this equation

add (add x y) z = add x (add y z)

0

1

2

3

4

– Page 7 / 16 –

0

1

2

3

4

5

Problem 6 Proof 2 (5 credits)

You are given the following definitions:
data Tree a = L | N (Tree a) a (Tree a)

flat :: Tree a -> [a]
flat L = []
flat (N l x r) = flat l ++ (x : flat r)

app :: Tree a -> [a] -> [a]
app L xs = xs
app (N l x r) xs = app l (x : app r xs)

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Prove the following lemma:
app t [] = flat t

You may use associativity of ++ in the proof.
Hint you may have to generalize the lemma first.

– Page 8 / 16 –

– Page 9 / 16 –

0

1

2

3

4

5

6

Problem 7 IO (6 credits)

Define an IO action main :: IO () that waits for user input in form of a binary number. The binary number
is given as a string 0bx where x is (potentially empty) string consisting of 0s and 1s. The string 0b represents
0. The program should output Invalid input if the given number does not adhere to this format. Otherwise,
the program should print the number to the standard output after converting it to decimal. For example, the
program should output 5 for the input 0b0101. The program should continue to listen for the next input in
either of the above cases.

You can read from standard input with the function getLine :: IO String and print a string to the
standard output with putStrLn :: String -> IO ().

– Page 10 / 16 –

Problem 8 Evaluation (3 credits)

Evaluate the following expressions as far as possible using the evaluation strategy described in the lecture.
Indicate infinite reductions by “. . . ”, as soon as nontermination becomes apparent.

1. take 2 odds

2. False || inf == inf

3. (\f -> \g -> g . map f) (+1) head odds

take :: Integer -> [a] -> [a]
take 0 _ = []
take n (x:xs) = x : take (n-1) xs

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

odds :: [Integer]
odds = 1 : map (+2) odds

head :: [a] -> a
head (x:xs) = x
head _ = error(" empty list")

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)

(||) :: Bool -> Bool -> Bool
True || b = True
False || b = b

inf :: a
inf = inf

0

1

2

3

– Page 11 / 16 –

– Page 12 / 16 –

Additional space for solutions–clearly mark the (sub)problem your answers are related to and
strike out invalid solutions.

– Page 13 / 16 –

– Page 14 / 16 –

– Page 15 / 16 –

– Page 16 / 16 –

