
Simple Fun Fourier Drawing Programm
Inspiration

• 3Blue1Brwon’s amazing video about fourier series
• Fourier Series can draw anything!
• In the form of Integral, the series will approach the oringinal image as the

number of terms rise
f(t) =

∫ 1

0
cne2iπn∗tdt

• The Mathematical Pinciple behind the image is just amazing

Data Format

• prepare your data in the following json format, where each object of series
represents a term of fourier series

{
"series": [

{
"n" : 0,
"real" : 1,
"imag" : 2

}
]

}

• n represents exactly n in the form, which should be a Integer, and controls
how fast the vector spins

• real and imag represent the complex constant cn in the form, control the
starting position and length of the vector

• Then put them in one directory without other files. Each file will be
transformed to a closed curve. In order to draw a image with multiple
curves, you’ll need the same amount of json files.

Usage

• Use existing Makefile
– make : build the executables
– make clean : clean the generated executables/artifacts
– make doc : generate a pdf versoin of the document
– make png : use the json file in directory data to draw the whole

image and save the output in directory out
– make gif : render the drawing process as an animation and save the

output in directory out
∗ warnging : too many frames may cause a horrible runtime which
would take hours to render

1

https://www.youtube.com/watch?v=r6sGWTCMz2k


– make evo : render the evolution process as the number of vectors
rises for each image

• Use executable directly
– Main <filetype> <source path> <output path>
– filetype : png, gif or evo
– source path : the path where json file exists
– output path : the path where images are saved to

Customization

• At the beginning of the source code are several option that can be cus-
tomized easily
– width, height : the height and width of the generated image
– white, black : the standard pixel color
– pixelArt : the function that dertermines color and by default draws

black
– pointCount : the number of points to be painted
– gifStep : how many pixels will be rendered each frame

∗ warning : terrible runtime if set too small
– filename : the name of outputed image
– scaleFactor : how much the final image will be scaled

Dependencies

• aeson : for json input parsing
• JuicyPixels : for pixel drawing
• attoparsec : for some weird functions
• pandoc : to convert this manual to pdf
• juicy-draw : for line drawing (not included in the final version)

Known Limits

• Due to lack of time I didn’t implemented the part where original image
are converted to Fourier Series
and instead just used 3Blue1Brown’s functions to calculate the series link

• Also due to lack of time I didn’t optimized the gif generation algorithm,
which has a terrible runtime when there’s too many points. The optimiza-
tion seems eazy but I had a real head ache on understanding the state
monad XD. It took me around 10 hours to render the whole project, so Do
Not Try At Home, unless you have plenty of computing horse power
and time

• Didn’t draw the vectors in the gif

• Should have been drawing vectorgraph from the very beginning.
bitmap images are just too slow in this case

2

http://hackage.haskell.org/package/aeson
http://hackage.haskell.org/package/JuicyPixels
http://hackage.haskell.org/package/attoparsec
https://github.com/jgm/pandoc
http://hackage.haskell.org/package/juicy-draw
https://github.com/3b1b/manim/blob/master/from_3b1b/old/fourier.py

	Simple Fun Fourier Drawing Programm
	Inspiration
	Data Format
	Usage
	Customization
	Dependencies
	Known Limits


