module Exercise_5 where import Test.QuickCheck import Data.List {- H5.3 -} {-WETT-} type Vertex = Int type Edge = (Vertex, Vertex) type Graph = ([Vertex], [Edge]) longestPathHelp :: Graph -> Vertex -> Vertex -> Int longestPathHelp g target currNode = let tList = [fst to | to <- edges, snd to == currNode, snd to /= target] in if null tList then 0 else maximum [longestPathHelp g target (tList !! i) + 1 | i <- [0..length tList - 1]] where vertices = fst g edges = snd g longestPath :: Graph -> Vertex -> Int longestPath g target = longestPathHelp g (starting g) target where vertices = fst g edges = snd g nodesIn = snd (unzip edges) starting g = [node | node <- vertices, not (elem node nodesIn)] !! 0 {-TTEW-} -- generates a DAG with u vertices and only one node without incoming edges -- you can use this function to test your implementation using QuickCheck genDag :: Int -> Gen Graph genDag n = let v = [1..n] in do b <- mapM (\i -> choose (1,n-i)) [1..n-1] t <- mapM (\(c,i) -> vectorOf c (choose (i+1, n))) (zip b [1..n]) let e = nub $ ([(1, i) | i<-[2..n]] ++ edges t 1 []) return $ (v,e) where edges [] _ acc = acc edges (ts:xs) i acc = edges xs (i+1) (acc ++ [(i,t) | t<-ts])