module Exercise_5 where import Test.QuickCheck import Data.List {- H5.3 -} {-WETT-} type Vertex = Int type Edge = (Vertex, Vertex) type Graph = ([Vertex], [Edge]) longestPath :: Graph -> Vertex -> Int longestPath (_,[]) end = 0 longestPath g end = aux (findStartingNode g) 0 where aux current acc = let paths = findCurrentPossiblePaths g current in if current == end then acc else if paths == [] then minBound :: Int else maximum [aux p (acc + 1) | p <- paths] findCurrentPossiblePaths :: Graph -> Vertex -> [Vertex] findCurrentPossiblePaths (_, xs) current = [snd x | x <- xs, fst x == current] findStartingNode :: Graph -> Vertex findStartingNode (xs, ys) = let outgoing = [snd y | y <- ys] in filter (\x -> not (x `elem` outgoing)) xs !! 0 {-TTEW-} -- generates a DAG with u vertices and only one node without incoming edges -- you can use this function to test your implementation using QuickCheck genDag :: Int -> Gen Graph genDag n = let v = [1..n] in do b <- mapM (\i -> choose (1,n-i)) [1..n-1] t <- mapM (\(c,i) -> vectorOf c (choose (i+1, n))) (zip b [1..n]) let e = nub $ ([(1, i) | i<-[2..n]] ++ edges t 1 []) return $ (v,e) where edges [] _ acc = acc edges (ts:xs) i acc = edges xs (i+1) (acc ++ [(i,t) | t<-ts])