module Exercise_5 where import Test.QuickCheck import Data.List {- H5.3 -} {-WETT-} type Vertex = Int type Edge = (Vertex, Vertex) type Graph = ([Vertex], [Edge]) {- dfs :: Graph -> [Vertex] dfs (vs,es) = reverse $ visit [] (head vs) where visit :: [Vertex] -> Vertex -> [Vertex] visit visited n | elem n visited = visited | otherwise = foldl visit (n:visited) [m | (n,m) <- es] -} longestPath :: Graph -> Vertex -> Int longestPath (vs,es) t = go [n | (n,m) <- es, m == t] 0 where go :: [Vertex] -> Int -> Int go [] len = len go nodes len = maximum [go [a | (a,b) <- es, b == n] (len+1) | n <- nodes] {-TTEW-} -- generates a DAG with u vertices and only one node without incoming edges -- you can use this function to test your implementation using QuickCheck genDag :: Int -> Gen Graph genDag n = let v = [1..n] in do b <- mapM (\i -> choose (1,n-i)) [1..n-1] t <- mapM (\(c,i) -> vectorOf c (choose (i+1, n))) (zip b [1..n]) let e = nub $ ([(1, i) | i<-[2..n]] ++ edges t 1 []) return $ (v,e) where edges [] _ acc = acc edges (ts:xs) i acc = edges xs (i+1) (acc ++ [(i,t) | t<-ts])