module Exercise_5 where import Test.QuickCheck import Data.List {- H5.3 -} {-WETT-} type Vertex = Int type Edge = (Vertex, Vertex) type Graph = ([Vertex], [Edge]) longestPath :: Graph -> Vertex -> Int longestPath g t = walk t [] where walk c vs = max [1 + walk a (c:vs) | (a,b) <- snd g, b == c, not (elem a vs)] max [] = 0 max xs = maximum xs {-TTEW-} -- generates a DAG with u vertices and only one node without incoming edges -- you can use this function to test your implementation using QuickCheck genDag :: Int -> Gen Graph genDag n = let v = [1..n] in do b <- mapM (\i -> choose (1,n-i)) [1..n-1] t <- mapM (\(c,i) -> vectorOf c (choose (i+1, n))) (zip b [1..n]) let e = nub $ ([(1, i) | i<-[2..n]] ++ edges t 1 []) return $ (v,e) where edges [] _ acc = acc edges (ts:xs) i acc = edges xs (i+1) (acc ++ [(i,t) | t<-ts])